E
Fourier Transformations

E.1
Definition and General Properties

Consider a sufficiently smooth function f of one real (or complex) variable x,

J R—R
f{ x> £(2) (E.1)

In many situations in mathematics, physics and chemistry it is advantageous
to consider not the function f itself but a somehow transformed variant f of
the function f. The so-called Fourier transform or Fourier transformation (FT) of
the function f is defined as

fk) = /_ (:dxe*ikxf(x) = /dxe’ikxf(x) (E.2)

It is essential to note that f and f are two different functions and not merely
the same function depending on two different variables. For the sake of sim-
plicity this distinction is not always reflected by the notation; however, we will
explicitly distinguish these two functions by the f-notation in this appendix.
Furthermore, since all integrals in this appendix extend over the whole real
line it is convenient to not explicitly write down the limits of integration,
which has been done in the second step of Eq. (E.2). Given the transformed
function f it is always possible to extract the original function f by a so-called

Fourier back transformation (FBT) defined by

flx) = % /dke“k"f(k) (E.3)

It is easy to see that the expressions for the two transformations (FT and FBT)
are perfectly consistent with each other if and only if the integral representa-
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tion of Dirac’s delta-function as given by Eq. (A.29) holds,
f(x) (E:?’) % /dkeJrika"(k) (EZZ) / X' % /dk e[k(xfx/) f(x/)
(

| —
S(x —x)
(A.28)
= flx) (E4)
Because of this feature Eq. (E.3) is also known as the Fourier reciprocity theorem.
We now investigate the Fourier transformation of the derivative f' = df/dx
of a function f. According to Eq. (E.2) it is given by

Fio = fared | Sin] " - fax | e o
~ ik /dxe’ikxf(x) — ik F(k) (E.5)

where integration by parts (p.L) has been employed at the second equality.
The surface term necessarily has to vanish for any integrable function f and
has thus been neglected. We have derived the very important result that a
derivative operator in normal (position) space reduces to a simple multiplica-
tive operator in Fourier (momentum) space. Especially in quantum mechanics
(cf. chapter 4) this feature is often conveniently exploited.

For the discussion of the Douglas—Kroll-Hess transformation in chapter 12
the Fourier transformation of a product of two functions, h(x) = f(x)g(x),
has been employed. In one dimension it is given by the convolution integral
of the Fourier transformations of f and g,

/dxe kx £ (x) /dx/dx e S (x —x') f(x)g(x")

/dx/dx’ —ikx /dk/elk’ x—x' f(x)g(x')
_/dk/ /dxefl(k k) Xf /dxl —ik’x ’

= oo [aR T K)g) (E6)

The formulae for Fourier transformations in three (or more) dimensions are
straightforward generalizations of the one-dimensional formulae presented
above and are thus not explicitly given in this appendix.

E.2
Fourier Transformation of the Coulomb Potential

The Coulomb potential, or more precisely, the Coulomb potential energy V
between two charged particles with charges g, and g, in three dimensions in
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E.2 Fourier Transformation of the Coulomb Potential

position-space (r-space) representation is given by

9192 1192

V(r) = T (E.7)
where r = |r| denotes the spatial distance between the two charges. If q; and
g2 feature the same sign, i.e., either both charges are positive or negative, the
potential will be repulsive, otherwise it will be negative and thus attractive.

For the discussion of the Douglas—Kroll-Hess transformation in chapter 12
it has been advantageous to consider the momentum-space representation of
the Coulomb potential, which may be obtained via a Fourier transformation
of V(r). Itis given by

V(k) = / dBre ik Ty (s (E.8)

However, Eq. (E.8) cannot be evaluated directly in a straightforward manner.
We thus introduce a suitable cutoff which damps the Coulomb potential suffi-
ciently and define the family of cutoff potentials

Vi(r) = @e—iﬂ, Vi >0 (E.9)

Obviously V,(r) — V(r) for up — 0.
Now we can try to calculate the Fourier transformation of V) (r). It is given
by

—ik-r —pr
— e e 1 e H
Vik) = 0192 /d3re KTv,(r) = qaa /d3r
© T efikrcose e~ Hr
= 27rq1q2/ dr/ d9rzsin9f (E.10)
0 0

where we have introduced spherical polar coordinates in the last step with
6 = /(k,r). If we now introduce the substitution

x = cos@ = dx = —sinfdb (E.11)

with x(6 =0) = +1 and x(0 = ) = —1, we arrive at

N © +1 .
Vu(k) = 27Tq1q2/0 drre™ ¥ [1 dax e~Hkrx

_ 2mqig /oodreyr (efikr _eikr)
0

—ik
_ 2miqgp [ —(utik)r = (u—ik)r
= /0 dr (e e )
_ 27iqaig2 1 B 1  Anqig2
B k <y+ik y—ik) w24 k2 (E-12)
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For y — 0 we finally arrive at the momentum-space representation of the
Coulomb potential,

(k) = lim V,(k) = 473{#

E.13
u—0 ( )

The Coulomb potential thus features a 1/k?-dependence in momentum space.
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