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F
Discretization and Quadrature Schemes

As a first-order differential equation, the radial Dirac equation, which is the
central equation to be solved in the case of atoms, requires a discretization
scheme, and several options are at hand of which some should be presented
here for the sake of completeness. The first one is analogous to the Nu-
merov procedure for second-order differential equations without first deriva-
tives [404,405]. The derivation in terms of Taylor series expansions provides a
derivation which is easier to understand. However, using operator techniques
is the most elegant way for this particular task.

F.1
Numerov Approach toward Second-Order Differential Equations

A general second-order differential equation of the form

χ′′(s) + F(ε, s)χ(s) = G(s) (F.1)

can be discretized on an equidistant grid of step size h, for instance, by the
so-called Numerov method [406, 407, 409, 412, 972, 973]. The special feature
of this method is that the truncation error is of comparatively high order in
the step size h while only three points are required to discretize the second
derivative. This is achieved through the explicit use of Eq. (F.1) as we shall see
in the following.

For this, we expand the function χ(sp) = χp at grid point sp and its second
derivative χ′′

p at that grid point into a Taylor series

χp±1 = χ(sp ± h) = χp ± 1
1!

χ′
ph +

1
2!

χ′′
ph2 ± 1

3!
χ′′′

p h3 + · · · (F.2)

χ′′
p±1 = χ(sp ± h)′′ = χ′′

p ±
1
1!

χ′′′
p h +

1
2!

χ
(4)
p h2 ± 1

3!
χ

(5)
p h3 + · · · (F.3)

Addition of Eq. (F.2) — and similarly for Eq. (F.3) — leads to

χp−1 + χp+1 = 2χp + χ′′
ph2 +

1
12

χ
(4)
p h4 + O(h6) (F.4)
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606 F Discretization and Quadrature Schemes

and

χ′′
p−1 + χ′′

p+1 = 2χ′′
p + χ

(4)
p h2 + O(h4) (F.5)

If the second derivative of χ in Eq. (F.5) is replaced by the right-hand side of
the re-arranged Eq. (F.1)

χ′′ = G − Fχ (F.6)

and if we solve for χ
(4)
p , we obtain

h2χ
(4)
p = Gp−1 − 2Gp + Gp+1 − Fp−1χp−1 + 2Fpχp − Fp+1χp+1 + O(h4) (F.7)

Now, Eq. (F.7) is applied to delete χ
(4)
p from Eq. (F.4). Solving for χ′′

p then yields

χ′′
p =

(
1
h2 +

Fp−1

12

)
χp−1 − 2

(
1
h2 +

Fp

12

)
χp +

(
1
h2 +

Fp+1

12

)
χp+1

− 1
12
(
Gp−1 − 2Gp + Gp+1

)
+ O(h4) (F.8)

Insertion of this result in the original differential equation yields a set of linear
equations whose p-th equation reads(

1
h2 +

Fp−1

12

)
χp−1 −

(
2
h2 − 10Fp

12

)
χp +

(
1
h2 +

Fp+1

12

)
χp+1

=
1
12
(
Gp−1 + 10Gp + Gp+1

)
+ O(h4) (F.9)

Multiplication by h2 and introduction of the definitions

bp ≡ 1 +
h2

12
Fp , ap ≡ −2 +

10h2

12
Fp = 10bp − 12 (F.10)

and

dp ≡ h2

12
(
Gp−1 + 10Gp + Gp+1

)
(F.11)

finally yields

ap−1χp−1 + bpχp + ap+1χp+1 = bp (F.12)

All such equations can be collected in a single matrix equation that reads⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b2 0
b1 a2 b3

b2 a3 b4
. . . . . . . . .

bn−2 an−1 bn
0 bn−1 an

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ1
χ2
χ3
...
χn−1
χn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
d3
...
dn−1
dn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(F.13)
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F.2 Numerov Approach for First-Order Differential Equations 607

Note that the boundaries would have to be corrected via simple extrapolation
in order to preserve the numerical accuracy wanted. The determinant of the
matrix in Eq. (F.13) can be calculated by a Sturm chain and the eigenvalue is
then solved for by bisection [408, 974].

F.2
Numerov Approach for First-Order Differential Equations

We now turn to the discretization of the coupled first-order differential equa-
tions as they occur in the solution of the Dirac radial equation for atoms (see
chapter 9). While the Numerov scheme is well established for second-order
differential equations — and, hence, for the solution of the radial Schrödinger
equation for atoms — this is not the case for first-order differential equations.
Indeed, it was long believed that the Numerov scheme cannot be used at all
in this context [973].

We again denote as χ(s) the function to be discretized on an equidistant grid
in the variable s. The differential equation to be solved reads

1
a

χ′(s) + F(s)χ(s) = G�(s) (F.14)

where a can take the values ±1 to account for the different signs of the first
derivatives in the coupled Dirac–Hartree–Fock equations. h is the step size of
the equidistant grid and the index p denotes the p-th grid point at sp. To keep
the equations clearly and simply arranged, χ(sp) will be abbreviated as χp.

Note that the derivations will be held as general as possible. Thus, the co-
efficient functions of the coupled Dirac–Hartree–Fock equations, Eqs. (9.237)
and (9.238), connected at a time with the other radial function are implicitly
introduced via the inhomogeneity,

G�(s) = G(s) − FUL(s) yL(s) (F.15)

H�(s) = H(s) − aFLU(s) yU(s) (F.16)

The function χ(s) is assumed to be analytic. We should, however, note
that the requirement of infinite differentiability is the reason for numerical
problems with the untransformed non-analytic radial functions in calculations
with point nuclei (cf. the non-integral exponent in the short-range series ex-
pansions derived in section 9.6.1). An analytic function χ(s) can be expanded
into a Taylor series around grid point p,

χp±1 = χp ± 1
1!

χ′
ph +

1
2!

χ′′
ph2 ± 1

3!
χ′′′

p h3 + · · · (F.17)

which may be subtracted from each other to become

−χp−1 + χp+1 = 2χ′
ph +

1
3

χ′′′
p h3 + O(χ

(5)
p h5) (F.18)
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608 F Discretization and Quadrature Schemes

where we use E. Landau’s O-symbolism to indicate that the main term of the
truncated series is of fifth order in h and contains a fifth derivative of χ(s) at
grid point p. Note that every second term in the series expansion vanishes.
The same procedure has to be repeated for the first derivative χ′(s), which
yields the series expansions

χ′
p±1 = χ′

p ±
1
1!

χ′′
ph +

1
2!

χ′′′
p h2 ± 1

3!
χ

(4)
p h3 + · · · (F.19)

which can be added to obtain

χ′
p−1 + χ′

p+1 = 2χ′
p + χ′′′

p h2 + O(χ
(5)
p h4) (F.20)

This equation may be rearranged to

χ′′′
p h2 = χ′

p−1 − 2χ′
p + χ′

p+1 + O(χ
(5)
p h4) (F.21)

which yields with the discretized differential equation (cf. Eq. (F.14))

χ′
p = a(−Fpχp + G�

p) (F.22)

the expression

χ′′′
p h2 = a

[
(G�

p−1 − Fp−1χp−1 − 2(G�

p − Fpχp)

+G�

p+1 − Fp+1χp+1)
]

+ O(χ
(5)
p h4) (F.23)

for the unknown term h/3 (χ′′′
p h2) needed in Eq. (F.18). This equation then

becomes, after division by (2h), the discretized first derivative

χ′
p =

(
− 1

2h
+

a
6

Fp−1

)
χp−1 − a

3
Fpχp +

(
1

2h
+

a
6

Fp+1

)
χp+1

− a
6

G�

p−1 +
a
3

G�

p −
a
6

G�

p+1 + O(χ
(5)
p h4) (F.24)

where, if we use Eq. (F.22) for a second time and remove the division by (2h),
the final result (i.e., the discretized differential equation) will be(

−1 +
ah
3

Fp−1

)
χp−1 +

4ah
3

Fpχp +

(
1 +

ah
3

Fp+1

)
χp+1

=
ah
3

G�

p−1 +
4ah

3
G�

p +
ah
3

G�

p+1 + O(χ
(5)
p h5) (F.25)

Remember that a can take the values ±1 only! Obviously, without using the
differential equation, we obtain from Eqs. (F.18) and (F.21), the general expres-
sion

χp+1 − χp−1 = 2χ′
ph +

h
3

(χ′
p−1 − 2χ′

p + χ′
p+1) + O(χ

(5)
p h5)

=
h
3

(χ′
p−1 + 4χ′

p + χ′
p+1) + O(χ

(5)
p h5) (F.26)
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F.3 Simpson’s Quadrature Formula 609

F.3
Simpson’s Quadrature Formula

For the numerical evaluation of expectation values, numerical quadrature
schemes are needed. In the case of atoms (see chapter 9), these are one-
dimensional and, hence, particularly simple. As an example, we discuss Simp-
son’s rule in the following.

The famous Simpson rule for numerical quadrature can be written as [392,
p.102] ∫ sp+1

sp−1

f (s)ds =
h
3
[

f (sp+1) + 4 f (sp) + f (sp−1)
]

− h
90

δ4 f (sp) + O(hδ6 f (s)) (F.27)

where the operator for a central difference, δ, is defined as δ f (x) = f (x +

h/2) − f (x − h/2). If we rewrite this equation in terms of the integrated func-

tion χ(s) =

∫
f (s) ds we obtain

χ(sp+1) − χ(sp−1) = h/3 [χ′(sp+1) + 4χ′(sp) + χ′(sp−1)]

− h
90

δ4χ′(sp) + O
[

hδ6χ′(s)
]

(F.28)

and get Eq. (F.26) — which will lead to Eq. (F.25) if the differential Eq. (F.22) is
introduced to remove the derivatives of χ(s).

F.4
Bickley’s Central-Difference Formulae

Simple discretization schemes use derivatives of Lagrangian interpolation
polynomials that approximate the function known only at the grid points {si}.
These schemes consist of tabulated numbers multiplied by the function’s val-
ues at m contiguous grid points and are referred to as “m-point-formulae” by
Bickley [411] (cf. [381, p. 914]). The accuracy of the numerical differentiation
increases with the number of neighboring grid points needed. For an accept-
able truncation error O(ht), t = 4 or higher, m is larger than t, which leads
to an extended amount of computation. The general structure and usage of
Bickley’s central-difference formulae can be demonstrated for the simplest ap-
proximation of a first-order derivative,

d f (s)
ds

= lim
∆s→0

∆ f (s)
∆s

(F.29)
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610 F Discretization and Quadrature Schemes

which becomes for an equidistant grid h = sk+1 − sk at a given position sk

lim
∆s→0

∆ f (s)
∆s

∣∣∣∣
s=sk

≈ f (sk+1) − f (sk)

sk+1 − sk
=

1
h

(−1, 1) ·
(

f (sk)

f (sk+1)

)
(F.30)

The last step carried out for all grid points yields the combined result

d f (s)
ds

≈ 1
h

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
...

. . .
...

0 0 0 0 · · · −1 1
0 0 0 0 · · · 0 −1

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝
f (s1)

f (s2)
...

f (sn−1)

f (sn)

⎞⎟⎟⎟⎟⎟⎠ (F.31)

As a result, we obtain a matrix representation for the differential operator.
Note that the differentiation of f (sn) at the upper boundary would require an
asymptotic correction in order to preserve the overall numerical accuracy.
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