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C
Technical Proofs for Special Relativity

C.1
Invariance of Space-Time Interval

In section 3.1.2 we found the invariance under Lorentz transformations of the
squared space-time interval s2

12 between two events connected by a light sig-
nal being solely based on the relativity principle of Einstein, i.e., the constant
speed of light in all inertial frames, cf. Eq. (3.5),

s2
12 = s′212 = 0 , ∀ IS′ (for light signal) (C.1)

As a consequence of Eq. (C.1) and the homogeneity of space and time and
the isotropy of space, we now formally prove the invariance of the space-time
interval for any two events E1 and E2, cf. Eq. (3.6),

s2
12 = s′212 , ∀ IS′ (for any two events) (C.2)

Proof: We thus consider these two arbitrary events with reference to two
inertial frames IS and IS′ moving with velocity v1 relative to each other. We
can always express the relationship between the four-dimensional distances
s2

12 and s′212 between these two events as

s′212 = Fv1

(
s2

12
)

(C.3)

where Fv1
(s) shall be a sufficiently smooth function permitting its Taylor ex-

pansion around s = 0, i.e.,

s′212 ≈ A(v1) + B(v1) s2
12 +

1
2

C(v1)
(
s2

12
)2

+ . . . (C.4)

Eq. (C.4) must hold for any two events and thus also for events connected
by a light signal. From Eq. (C.1) we thus find A(v1) = 0. Furthermore,
Eq. (C.4) must also hold for events in the infinitesimal neighborhood of each
other where s2

12 = ds2 is an infinitesimal, i.e., very small quantity. For those
events we thus arrive at

ds′2 = B(v1) ds2 (C.5)
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Because of the assumption of a homogeneous space-time the function B(v1)
cannot depend on the space-time coordinates t and r, and because of the as-
sumption of spatial rotational invariance (isotropy of space) the function B(v1)
must not depend on the direction of v1 but only on its magnitude v1 = |v1|,
i.e.,

ds′2 = B(v1) ds2 (C.6)

The last ingredient for this proof is the group structure of Lorentz transforma-
tions, i.e., the possibility to consider a further inertial frame IS′′ which moves
with velocity v2 relative to IS. Its relative velocity against IS′ shall be v12. We
thus arrive at the following relations for the squared space-time intervals be-
tween our two infinitesimally neighboring events,

ds′2 = B(v1) ds2 (C.7)
ds′′2 = B(v2) ds2 (C.8)
ds′′2 = B(v12) ds′2 (C.9)

A simple rearrangement of Eqs. (C.7)–(C.9) yields

B(v12) =
B(v2)

B(v1)
(C.10)

The term on the left hand side of this equation is a function of the angle be-
tween v1 and v2, cf. section 3.2.3, whereas the term on the right hand side is
not. Eq. (C.10) can thus only be valid in general if B(v12) is also not a function
of the angle between v1 and v2. Since we have made no further assumptions
for both the size and the orientation of the velocities v1 and v2 this immedi-
ately implies

B(v) = const. = 1 , ∀ velocities v (C.11)

This finally yields the desired result for infinitesimally neighboring events,

ds′2 = ds2 (C.12)

and since Eq. (C.12) holds for any infinitesimally neighboring events within
the whole space-time, it holds for any two events and thus Eq. (C.2) is proven.

C.2
Uniqueness of Lorentz Transformations

In section 3.1.3 we mentioned that Lorentz transformations of the form as
given by Eq. (3.12) are the only nonsingular coordinate transformations from
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C.2 Uniqueness of Lorentz Transformations 593

IS to IS′, i.e., x → x′(x), that leave the four-dimensional space-time interval
ds2 invariant. Nonsingular in this context means that both x′ = x′(x) and
x = x(x′) are sufficiently smooth and well-behaved functions that feature a
well-defined inverse.

Proof: We consider an arbitrary nonsingular coordinate transformation x →
x′(x) and calculate the four-dimensional distance ds′2 between two infinitesi-
mally neighboring events,

ds′2 = gαβ dx′α dx′β = gαβ
∂x′α

∂xµ

∂x′β

∂xν dxµ dxν

= gαβ (∂µx′α) (∂νx′β) dxµdxν (C.13)

where we have taken advantage of the relation dx′α = (∂µx′α)dxµ for in-
finitesimal space-time distances (at the second equality). Since we are looking
for transformations that leave the space-time interval invariant for any two
events,

ds′2 !
= ds2 = gµν dxµ dxν (C.14)

this yields the condition

gµν = gαβ (∂µx′α) (∂νx′β) (C.15)

We now differentiate this equation with reference to the arbitrary space-time
component xσ and, by the product rule, arrive at

0 = gαβ (∂µ∂σx′α) (∂νx′β) + gαβ (∂µx′α) (∂ν∂σx′β) (C.16)

In order to solve for the second derivatives we write down Eq. (C.16) with
indices µ and σ interchanged,

0 = gαβ (∂µ∂σx′α) (∂νx′β) + gαβ (∂σx′α) (∂ν∂µx′β) (C.17)

and again with indices ν and σ interchanged,

0 = gαβ (∂µ∂νx′α) (∂σx′β) + gαβ (∂µx′α) (∂ν∂σx′β) (C.18)

We now calculate (C.16) + (C.17) − (C.18) and, bearing in mind that α and β
are just dummy indices which are summed over, we find

0 = 2 gαβ (∂µ∂σx′α) (∂νx′β) (C.19)

Since we have assumed a nonsingular coordinate transformation, the last term
(∂νx′β) cannot vanish identically, and thus Eq. (C.19) can only hold in general
if the second derivatives identically vanish, i.e.,

∂µ∂σx′α = 0 (C.20)
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This immediately implies a linear coordinate transformation of the form as
given by Eq. (3.12), i.e.,

x′ = Λx + a ⇐⇒ x′µ = Λ
µ

ν xν + aµ (C.21)

where the entries of the matrix Λ and the 4-vector a must be constants which
do not depend on x. Insertion of Eq. (C.21) in Eq. (C.15) yields,

gµν = gαβ (∂µx′α) (∂νx′β) = gαβ Λα
µ Λ

β
ν (C.22)

i.e., the fundamental property of Lorentz transformations as given by Eq. (3.17)
is recoverd. This completes the proof of the uniqueness of Lorentz transfor-
mations as the natural symmetry transformations within the four-dimensional
Minkowski space equipped with the metric g.

C.3
Useful Trigonometric and Hyperbolic Formulae for Lorentz Transformations

The trigonometric functions may be related to the exponential function via
Euler’s relation

eix = cos x + i sin x , ∀x ∈ R (C.23)

which may be inverted to yield

cos x = 1
2
(
eix + e−ix) , sin x = 1

2i
(
eix − e−ix) , ∀x ∈ R (C.24)

The tangent tan and cotangent cot are defined as

tan x =
sin x
cos x , ∀x ∈ R \

{
(2k + 1) π

2 , k ∈ Z
}

(C.25)

cot x =
cos x
sin x

=
1

tan x
, ∀x ∈ R \

{
kπ , k ∈ Z

}
(C.26)

The inverse functions of the trigonometric functions (on suitably chosen do-
mains) are denoted as arccos x, arcsin x, arctan x, and arccot x. Important rela-
tions between the trigonometric functions and/or their inverse functions are

cos2 x + sin2 x = 1 , ∀x ∈ R (C.27)

arcsin x = arctan
x√

1 − x2
, ∀x ∈] − 1, 1[ (C.28)

arccos x = arccot
x√

1 − x2
, ∀x ∈] − 1, 1[ (C.29)

arctan x + arctan y = arctan
(

x + y
1 − xy

)
, ∀x, y ∈ R with xy < 1 (C.30)
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C.3 Useful Trigonometric and Hyperbolic Formulae for Lorentz Transformations 595

Similarly to the definition of the usual trigonometric functions, the hyperbolic
functions are given by

cosh x = 1
2
(
ex + e−x) , sinh x = 1

2
(
ex − e−x) , ∀x ∈ R (C.31)

and

tanh x =
sinh x
cosh x =

ex − e−x

ex + e−x , ∀x ∈ R (C.32)

As a direct consequence it holds that

cosh2 x − sinh2 x = 1 , ∀x ∈ R (C.33)

cosh(x + y) = cosh x cosh y + sinh x sinh y , ∀x ∈ R (C.34)

sinh(x + y) = sinh x cosh y + cosh x sinh y , ∀x ∈ R (C.35)

tanh(x + y) =
tanh x + tanh y

1 + tanh x tanh y , ∀x ∈ R (C.36)

The inverse hyperbolic functions (on suitably chosen domains) are the area-
functions arcosh, arsinh, and artanh. They satisfy

artanh x = arcosh
(

1√
1 − x2

)
, ∀x ∈] − 1, 1[ (C.37)

artanh x ± artanh y = artanh
(

x ± y
1 ± xy

)
, ∀x, y ∈ R with xy < 1 (C.38)
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