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A
Vector and Tensor Calculus

In relativistic theory one often encounters vector and tensor expressions in
both three- and four-dimensional form. The most important of these expres-
sions are briefly summarized in this section, where Einstein’s summation con-
vention (cf. section 3.1.2) is strictly applied for four-dimensional objects.

A.1
Three-Dimensional Expressions

A.1.1
Algebraic Vector and Tensor Operations

In chapter 2 the Kronecker delta δij and the totally antisymmetric Levi-Cività
symbol ε ijk were introduced by Eqs. (2.24) and (2.9), respectively. Their rela-
tion to each other is given by

3

∑
i=1

εijkεilm = δjlδkm − δjmδkl (A.1)

This immediately yields

3

∑
i,j=1

εijkεijm =
3

∑
j=1

(
δjjδkm − δjmδjk

)
= 2δkm (A.2)

since the trace of the Kronecker symbol is given by

3

∑
i=1

δii = 3 (A.3)

The Euclidean scalar product between two arbitrary three-dimensional vec-
tors A and B is given by

A · B =
3

∑
i=1

AiBi = AB cos γ (A.4)
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582 A Vector and Tensor Calculus

with A and B being the length of the vectors A and B, respectively, and γ
being the angle spanned by these vectors, γ = ̸ (A, B). The vector product or
cross product between these vectors yields again a three-vector C defined as

C = A × B =

⎛

⎝
AyBz − AzBy
AzBx − AxBz
AxBy − AyBx

⎞

⎠ (A.5)

and its ith component might thus be written as

Ci =
(

A×B
)

i =
3

∑
j,k=1

εijk AjBk (A.6)

A.1.2
Differential Vector Operations

The gradient of a scalar function φ = φ(r) is defined as the three-dimensional
vector of its Cartesian partial derivatives,

grad φ(r) = ∇φ(r) =

(
∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

)T
∈ R

3 (A.7)

which is consequently interpreted as a column-vector in this book. The diver-
gence of a vector field A = A(r) is a measure of the sources defined by

divA = ∇ · A =
3

∑
i=1

∂Ai
∂xi

=
3

∑
i=1

∂i Ai ∈ R (A.8)

whereas the curl of this vector field is itself a vector field defined by

curl A = ∇× A =

⎛

⎝
∂y Az − ∂z Ay
∂z Ax − ∂x Az
∂x Ay − ∂y Ax

⎞

⎠ ∈ R
3 (A.9)

(in the German literature, it is also common to use ‘rot’ instead of ‘curl’). Fi-
nally, the Laplacian of a scalar function φ might be considered as a generaliza-
tion of the familiar one-dimensional second derivative as is given by

∆φ(r) = div grad φ(r) =
3

∑
i=1

∂2φ(r)
∂x2

i
=

3

∑
i=1

∂2
i φ(r) ∈ R (A.10)

Application of the Laplacian to a vector field A has to be understood as act-
ing separately on each component. The result is then again a three-vector, of
course. We note some important identities for the above vector operations.
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A.1 Three-Dimensional Expressions 583

For any differentiable vector fields A, B and scalar functions φ, ψ the follow-
ing relations hold:

grad (φψ) = φ grad ψ + ψ grad φ (A.11)

div
(
φA

)
= A · grad φ + φ divA (A.12)

curl
(
φA

)
= (grad φ) × A + φ curl A (A.13)

div (A × B) = B · curl A − A · curl B (A.14)

curl (A × B) = A divB − B divA + (B ·∇)A − (A ·∇)B (A.15)

∆A = grad (divA) − curl (curl A) (A.16)

div curl A = 0 (A.17)

curl grad φ = 0 (A.18)

The proof of all these relations is straightforward and thus omitted here.
Eq. (A.17) states that any rotational vector field has no sources, and Eq. (A.18)
summarizes the fact that the curl of any gradient field is zero.

A.1.3
Integral Theorems and Distributions

In classical mechanics and electrodynamics the integral theorems of Gauss
and Stokes may often be employed beneficially. Given a sufficiently smooth
(i.e., differentiable) and well-behaved vector field A, Gauss’ theorem may be
expressed in its most elementary form as

∫

V
divA d3r =

∫

∂V
A · dσ (A.19)

where ∂ V denotes the closed surface of the volume V and σ is the outer nor-
mal unit vector perpendicular to the plane ∂V. Eq. (A.19) is also denoted as the
divergence theorem and relates the volume integral over all sinks and sources
(i.e., the divergence) of a vector field A to the net flow of this vector field
through the volume’s boundary. Similarly, in its simplest form Stokes’ theorem
relates the vortices or curls of a vector field A within a given plane or surface
S to the line integral of this vector field along the surface’s boundary ∂S,

∫

S
(curl A) · dσ =

∮

∂S
A · dr (A.20)

Here σ again denotes the outer normal unit vector perpendicular to the sur-
face S. Eq. (A.20) is sometimes also referred to as the curl theorem .
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584 A Vector and Tensor Calculus

In discussions of the Coulomb potential the following relations are often
useful. The gradients of a distance between two positions, r and r ′, read

∇r |r − r′| = ∇r
√

(r − r′)2 =
1
2

1√
(r − r′)2

[
2(r − r′)

]
=

r − r′

|r − r′| (A.21)

∇r′ |r − r′| =
1
2

1√
(r − r′)2

[
2(r − r′)

]
(−1) = − r − r′

|r − r′| (A.22)

and the gradient and Laplacian of the inverse distance become

∇r
1

|r − r′| = − r − r′

|r − r′|3
= −∇r′

1
|r − r′| (A.23)

∆
1

|r − r′| = −4π δ(3)(r − r′) (A.24)

The indices in Eq. (A.21) label the variable with respect to which the derivative
is taken. We note that the proof of Eq. (A.24) is only trivial for r − r ′ ̸= 0 for
which the right-hand side becomes zero. In this case, where r ̸= r ′, we may
simply differentiate the inverse distance and obtain this result right away,

(
∆

1
|r − r′|

)

r̸=r′
= ∇r ·

(
∇r

1
|r − r′|

)
(A.23)

= ∇r ·
(
− r − r′

|r − r′|3
)

= −
( 1
|r − r′|3

∇r ·(r − r′)
︸ ︷︷ ︸

3

+ (r − r′)·∇r
1

|r − r′|3
︸ ︷︷ ︸
−3(r−r′)·(r−r′)/|r−r′ |5

)
=0(A.25)

(∆ may equally well be resolved by a differentiation with respect to r ′).
Eq. (A.24) states that the function

G(r, r′) = − 1
4π |r − r′| (A.26)

is the so-called Green’s function of the Laplacian, since application of the differ-
ential operator ∆ to G yields the three-dimensional delta distribution δ(3)(r − r′)
[971, p. 22ff.]. The three-dimensional delta distribution is the product of three
one-dimensional delta distributions,

δ(3)(r − r′) = δ(x − x′) δ(y − y′) δ(z − z′) (A.27)

which may sloppily be thought of as being zero everywhere except at x = x ′,
where it is appropriately infinite such that

∫ ∞

−∞
dx δ(x − x′) f (x) = f (x′) (A.28)
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A.1 Three-Dimensional Expressions 585

for all continuous and integrable test functions f . A very useful and conve-
nient integral representation of the delta distribution is given by

δ(x − x′) =
1

2π

∫ ∞

−∞
dk eik(x−x′) (A.29)

which will become important in appendix E in the discussion of Fourier trans-
forms.

A.1.4
Total Differentials and Time Derivatives

In both classical mechanics and quantum mechanics one often has to deal with
total time derivatives of functions depending on many time-dependent argu-
ments. For example, consider a real-valued function f depending on N time-
dependent arguments xi(t) and explicitly on the time t itself,

f = f (x1(t), x2(t), . . . , xN(t), t) (A.30)

The partial time derivative of the function f is simply given by

∂t f =
∂ f
∂t

(A.31)

i.e., the time-dependence of the arguments xi does not matter at all for the cal-
culation of the partial time derivative of f . Only the explicit time dependence
is taken into account. For the calculation of the total time derivative, however,
both explicit and implicit dependences on the time t have to be taken into ac-
count, i.e., the total time derivative is given by application of the chain rule of
multi-dimensional calculus,

ḟ =
d f
dt

=
N
∑
i=1

∂ f
∂xi

dxi
dt

+
∂ f
∂t

(A.32)

This rule has, for example, been extensively applied in the discussion of
Hamiltonian mechanics in section 2.3. By formal multiplication of Eq. (A.32)
by dt the total differential of the function f is recovered,

d f =
N
∑
i=1

∂ f
∂xi

dxi +
∂ f
∂t dt (A.33)
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586 A Vector and Tensor Calculus

A.2
Four-Dimensional Expressions

A.2.1
Algebraic Vector and Tensor Operations

As a generalization of the three-dimensional Levi-Cività symbol defined in
chapter 2 by Eq. (2.9) we have introduced the four-dimensional totally anti-
symmetric (pseudo-)tensor εαβγδ, whose contravariant components have been
defined by

εαβγδ =

⎧
⎨

⎩

+1 (αβγδ) is an even permutation of (0123)
−1 if (αβγδ) is an odd permutation of (0123)

0 else

⎫
⎬

⎭ (A.34)

We have further introduced the four-dimensional generalization of the scalar
product between any two 4-vectors a and b by

a · b = aT g b = aµbµ = a0b0 − ai bi = a0b0 − a · b (A.35)

As a consequence, the four-dimensional distance between 2 infinitesimal
neighboring events can now be expressed as

ds2 = dx · dx = dxT g dx = gµν dxµ dxν (A.36)

A.2.2
Differential Vector Operations

Similarly to the nonrelativistic situation [cf. Eq. (2.28)], the components of the
Lorentz transformation matrix Λ may be expressed as derivatives of the new
coordinates with respect to the old ones or vice versa. However, since we
have to distinguish contra- and covariant components of vectors in the rela-
tivistic framework, there are now four different possibilities to express these
derivatives:

x′µ = Λ
µ

νxν −→ Λ
µ

ν =
∂x′µ

∂xν = ∂νx′µ (A.37)

xµ = Λ
µ

ν x′ν −→ Λ ν
µ =

∂xν

∂x′µ
= ∂′µxν (A.38)

x′µ = Λ ν
µ x′ν −→ Λ ν

µ =
∂x′µ
∂xν

= ∂νx′µ (A.39)

xν = Λ
µ

νx′µ −→ Λ
µ

ν =
∂xν

∂x′µ
= ∂′µxν (A.40)

where we have employed a shorthand notation for the 4-gradient defined by

∂µ ≡ ∂

∂xµ =

(
1
c

∂

∂t , ∇
)

=

(
1
c

∂

∂t ,
∂

∂x ,
∂

∂y ,
∂

∂z

)
(A.41)
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A.2 Four-Dimensional Expressions 587

The 4-gradient has been written as a row vector above solely for our conve-
nience; it still is to be interpreted mathematically as a column vector, of course.
Being defined as the derivative with respect to the contravariant components
xµ, the 4-gradient ∂µ is naturally a covariant vector whose contravariant com-
ponents may be obtained by application of the metric g and read

∂µ = gµν∂ν =
∂

∂xµ
=

(
1
c

∂

∂t
, −∇

)
(A.42)

The four-dimensional generalization of the Laplacian has been identified to
be the d’Alembert operator

= ∂µ∂µ =
1
c2

∂2

∂t2 − ∆ (A.43)
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