DERIVATION OF LAGRANGE’S EQUATIONS

Consider a system of particles: k =1,..., Np. Let r®*) denote the posi-
tion of the k' particle relative to an inertial reference frame. Let f(*) be the
resultant force acting on the mass m; of the k** particle. Then, from Newton’s
Second Law:

f(k) :mk'r"(k) k= 1,...,NP (1)

or,

£ —mi® =0 k=1,...,Np (1)

Let 6r(®) be a ‘virtual’ displacement that is compatible with all con-
straints on the motion of the k*" particle. Clearly, any motion r(*) that satisfies

(1) satisfies
Np

> (R —myi ™) or® =0 (1)
k=1

for all 6r®*). Equation (1)” is, for dynamical systems, the analog of the state-

ment that the virtual work of a system in equilibrium vanishes for all compat-

ible virtual displacements of the system.

Consider a decomposition of the resultant force f(*) of the form
f6) =) y R®) k=1,... Np

where R*) is the force due to the constraints and F¥) is the resultant of all
other forces acting on the k** particle. Then, because the constraint forces R(*)
do no work during motions compatible with the constraints, i.e. R*).¢ér(*) =0,

Eqgn. (1)” becomes
Np

Z(F(M — mii®)) . 6r®) =0 (nH)"
k=1
for all compatible or(*). Equation (1)"” is the form of Newton’s Second Law
for constrained dynamical systems that we will use in deriving Lagrange’s

equations.

For holonomic dynamical systems with n degrees of freedom all displace-
ments r®¥) can be expressed in terms of n independent generalized coordinates

q1(t),...,qn(t) by means of transformation equations of the form

r® = 2™ (g (0),...,qu(t),t) k=1,...,Np



Consequently, compatible virtual displacements ér(*) can be expressed in terms

of virtual changes d¢; in generalized coordinates (with time held constant) by

sk — Z Or(k )

Jlaq]

Then, the virtual work §WW associated with the virtual displacements 6r(*¥) can

be written as

Np Np n 81‘( )
W= F®.56® =3 "Fk 5q]
k=1 k=1j=1
or
5W = ZQ]'(SQJ'
j=1
where

ZFUC ar( )

are the generalized forces corresponding to the generalized coordinates ¢;. Ex-
pressing the virtual work term in Eqn. (1) in terms of generalized forces and

displacements we can rewrite (1) in the form

Np n
kar(k) . 6r(’“) = Z Qj5qj
k=1 j=1

or,

i ork)
kaf'(k) Z 5% Z QJ(SQJ
k=1

=1

or, interchanging the order of summation,

i (k )
Z kar(k Br |6g; = ZQjéqJ (2)

ij=1 k=1

To derive Lagrange’s equations we want to show that the term in [ ]

can be expressed in terms of derivatives of the kinetic energy

1 X
-1 kzmkl-,(k) s (3)
=1



To this end, differentiate Eqn. (3) with respect to ¢;:

Np .
oT or (k)
= — R (k) 4
— = mgT —.
9%, gzl k 94, (4)

Perhaps the least intuitive step in the derivation of Lagrange’s equations is
noting that the last term in Eqn. (4) satisfies the following identity, known as

the “cancellation of dots”.
or (k) or (k)

— = . 5
g~ oq; (5)
We digress briefly to derive this equation. Differentiation of the transformation

equations gives

or(k ) ar(k)
PR — Z i (6)
= 8qJ ot
which shows that the function r*) can be expressed as a function of the fol-

lowing form
r(k) = I"(k)((h (t)a s aQn(t)’ (jl(t)a Ty Qn(t)v t)' (7)

Differentiation of (7) with respect to time gives

dr®)  ZLork)  gptk) - Hp(k)

—— = g; + -G + (8)
dt =1 3(]]' I 3%’ I ot

whereas differentiation of (6) with respect to time gives

dr(k) " ork) ork) or (k)

The first and third terms in Eqns. (8) and (9) are identical. The remaining
terms can be the same for all motions only if Eqn. (5) holds. Thus, the

“cancellation of dots” identity is proved.

Returning to the derivation of Lagrange’s equations and using the “can-

cellation of dots” identity in Eqn.(4) we find

an‘

(k)
E my®) . or . (10)
6% k=1

Differentiation of Eqn.(10) with respect to time gives

d  oT or(k) i (%)
Z () = (k) F(K)
dt(qu) gmkr 5a, + kar —. (11)



where the last term is simply 07/0q;. Hence,

N
d 0T, 0T T~ ork)
— (k)
— (=) — = mEr " - . 12
dt(aq]') 8q]‘ P b aq]' (12)
Substitution of (12) into Eqn.(2) gives
—~.d 0T, OT
Z[Z{t_(aqj) - aqj - Qj}(sqj =0. (13)

Jj=1
Because the variations dq; in Eqn. (13) are independent, we conclude that

d oT oT

— (=) — —-Q,; = 1 =1,...,n.
dt<8q]) 5qj Q] 0 J ) y (14)

Equations (14) are Lagrange’s equations for systems with holonomic constraints,jj

whether or not the forces are conservative.

If all forces are conservative, then ); = —9V/d¢; and (14) becomes

i(gz _27:_'_8_‘/_0 j=1 n
dt 8(]] 8(]]' aq]' T

or,

d or, 8T -V)

—_ ) ——— = =1,...
dt(aqj) aq]' 0 ’ "
or, because 0V/0q; = 0,
d oT-V) oT -V) .
— — = =1,...,n. 15

Finally, introducing the Lagrangian L =T — V, Eqns. (15) can be written as

L, oL
d oL, oL _,

2EY_ =g i=1,....n 16
dt(aqj) 54, i=1,...,n (16)

Equations (16) are Lagrange’s equations for conservative systems with holo-

nomic constraints.



