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Figure 11 .18 Optical-model fits to differential cross sections (at left, shown as a 
ratio to the Rutherford cross section) and polarizations, for 1 0-MeV protons 
scattered elastically from various targets. The solid lines are the fits to the data 
using the best set of optical-model parameters. From F. D. Becchetti, Jr., and G. W. 
Greenlees, Phys. Rev. 182, 11 90 (1 969). 

I 1 .I 0 COMPOUND-NUCLEUS REACTIONS 
Suppose an incident particle enters a target nucleus with an impact parameter 
small compared with the nuclear radius. It then will have a high probability of 
interacting with one of the nucleons of the target, possibly through a simple 
scattering. The recoiling struck nucleon and the incident particle (now with less 
energy) can each make successive collisions with other nucleons, and after several 
such interactions, the incident energy is shared among many of the nucleons of 
the combined system of projectile + target. The average increase in energy of any 
single nucleon is not enough to free it from the nucleus, but as many more-or-less 
random collisions occur, there is a statistical distribution in energies and a small 
probability for a single nucleon to gain a large enough share of the energy to 
escape, much as molecules evaporate from a hot liquid. 

Such reactions have a definite intermediate state, after the absorption of the 
incident particle but before the emission of the outgoing particle (or particles). 
This intermediate state is called the compound nucleus. Symbolically then the 
reaction a + X + Y + b becomes 

a + X + C* --j Y + b 

where C* indicates the compound nucleus. 
As might be assumed from seeing the reaction written in this form, we can 

consider a reaction that proceeds through the compound nucleus to be a two-step 
process: the formation and then the subsequent decay of the compound nucleus. 
A given compound nucleus may decay in a variety of different ways, and essential 
to the compound-nucleus model of nuclear reactions is the assumption that the 
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relative probability for decay into any specijic set of jinal products is independent of 
the means of formation of the compound nucleus. The decay probability depends 
only on the total energy given to the system; in effect, the compound nucleus 
" forgets" the process of formation and decays governed primarily by statistical 
rules. 

Let's consider a specific example. The compound nucleus 64Zn* can be formed 
through several reaction processes, including p + 63Cu and a + 60Ni. It can also 
decay in a variety of ways, including 63Zn + n, 62Zn + 2n, and 62Cu + p + n. 
That is 

p +63cu  
1 64~n*  62Cu + n + p 

62Zn + 2n / 1 
a +60Ni 
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Figure 11.19 Cross sections for different reactions leading to the compound 
nucleus 64Zn show very similar characteristics, consistent with the basic assump- 
tions of the compound nucleus model. From S. N. Goshal, Phys. Rev. 80, 939 
(1 950). 
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Figure 11.20 The curve marked NC shows the contribution from compound- 
nucleus formation to the cross section of the reaction 25Mg(p, ~ ) ~ ~ N l g .  The curve 
marked ID shows the contribution from direct reactions. Note that the direct part 
has a strong angular dependence, while the compound-nucleus part shows little 
angular dependence. From A. Gallmann et al., Nucl. Phys. 88, 654 (1966). 

If t h s  model were correct, we would expect for example that the relative cross 
sections for 63Cu(p,n)63Zn and 60Ni(a,n)63Zn would be the same at incident 
energies that give the same excitation energy to 64Zn*. Figure 11.19 shows the 
cross sections for the three final states, with the energy scales for the incident 
protons and a's shifted so that they correspond to a common excitation of the 
compound nucleus. The agreement between the three pairs of cross sections is 
remarkably good, showing that indeed, the decay of 64Zn* into any specific final 
state is nearly independent of how it was originally formed. 

The compound-nucleus model works best for low incident energies (10-20 
MeV), where the incident projectile has a small chance of escaping from the 
nucleus with its identity and most of its energy intact. It also works best for 
medium-weight and heavy nuclei, where the nuclear interior is large enough to 
absorb the incident energy. 

Another characteristic of compound-nucleus reactions is the angular distribu- 
tion of the products. Because of the random interactions among the nucleons, we 
expect the outgoing particle to be emitted with a nearly isotropic angular 
distribution (that is, the same in all directions). This expectation is quite 
consistent with experiment, as shown in Figure 11.20. In cases in which a heavy 
ion is the incident particle, large amounts of angular momentum can be trans- 
ferred to the compound nucleus, and to extract that angular momentum the 
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Al pha-particle energy 

Figure 11.21 
trons will “evaporate” from the compound nucleus. 

At higher incident energies, it is more likely that additional neu- 

emitted particles tend to be emitted at right angles to the angular momentum, 
and thus preferentially at 0 and 180”. With light projectiles, this effect is 
negligible. 

The “evaporation” analogy mentioned previously is really quite appropriate. In 
fact, the more energy we give to the compound nucleus, the more particles are 
likely to evaporate. For each final state, the cross section has the Gaussian-like 
shape shown in Figure 11.19. Figure 11.21 shows the cross sections for (a, xn) 
reactions, where x = 1,2,3,. . . . For each reaction, the cross section increases to 
a maximum and then decreases as the higher energy makes it more likely for an 
additional neutron to be emitted. 

1 1 .l 1 DIRECT REACTIONS 

At the opposite extreme from compound-nucleus reactions are direct reactions, 
in which the incident particle interacts primarily at the surface of the target 
nucleus; such reactions are also called peripheral processes. As the energy of the 
incident particle is increased, its de Broglie wavelength decreases, until it be- 
comes more likely to interact with a nucleon-sized object than with a nucleus-sized 
object. A 1-MeV incident nucleon has a de Broglie wavelength of about 4 fm, and 
thus does not “see” individual nucleons; it is more likely to interact through a 
compound-nucleus reaction. A 20-MeV nucleon has a de Broglie wavelength of 
about 1 fm and therefore may be able to participate in direct processes. Direct 
processes are most likely to involve one nucleon or very few valence nucleons 
near the surface of the target nucleus. 

Of course, it may be possible to have direct and compound-nucleus processes 
both contribute to a given reaction. How can we distinguish their contributions 
or decide which may be more important? There are two principal differences that 
can be observed experimentally: (1) Direct processes occur very rapidly, in a time 
of the order of s, while compound-nuclear processes typically take much 
longer, perhaps to 1O-I’  s. This additional time is necessary for the 
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distribution and reconcentration of the incident energy. There are ingenious 
experimental techniques for distinguishing between these two incredibly short 
intervals of time. (2) The angular distributions of the outgoing particles in direct 
reactions tend to be more sharply peaked than in the case of compound-nuclear 
reactions. 

Inelastic scattering could proceed either through a direct process or a com- 
pound nucleus, largely depending on the energy of the incident particle. The 
deuteron stripping reaction (d,n), which is an example of a transfer reaction in 
which a single proton is transferred from projectile to target, may also go by 
either mechanism. Another deuteron stripping reaction (d, p) may be more likely 
to go by a direct process, for the “evaporation” of protons from the compound 
nucleus is inhibited by the Coulomb barrier. The (a, n) reaction is less likely to be 
a direct process, for it would involve a single transfer of three nucleons into 
valence states of the target, a highly improbable process. 

One particularly important application of single-particle transfer reactions, 
especially (d, p) and (d, n), is the study of low-lying shell-model excited states. 
Several such states may be populated in a given reaction; we can choose a 
particular excited state from the energy of the outgoing nucleon. Once we have 
done so, we would like to determine just whch shell-model state it is. For this we 
need the angular distribution of the emitted particles, which often give the spin 
and parity of the state that is populated in a particular reaction. Angular 
distributions therefore are of critical importance in studies of transfer reactions. 
(Pickup reactions, for example (p, d), in whch the projectile takes a nucleon from 
the target, also give information on single-particle states.) 

Let’s consider in somewhat more detail the angular momentum transfer in a 
deuteron stripping reaction. In the geometry of Figure 11.22, an incident particle 
with momentum pa gives an outgoing particle with momentum P b ,  while the 
residual nucleus (target nucleus plus transferred nucleon) must recoil with 
momentum p = pa - p b .  In a direct process, we may assume that the transferred 
nucleon instantaneously has the recoil momentum and that it must be placed in 
an orbit with orbital angular momentum &= Rp, assuming that the interaction 

Figure 11.22 Geometry for direct reactions occurring primarily on the nuclear 
surface. 
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takes place at the surface of the nucleus. The momentum vectors are related by 
the law of cosines: 

p2 = p; + p i  - 2papb cos 8 

(11.57) 

Given the energies of the incident and outgoing particles, we then have a direct 
relationship between d and 8-particles emerging at a given angle should 
correspond tQ a specific angular momentum of the orbiting particle. 

Consider a specific example, the (d,p) reaction on 90Zr leading to single 
neutron shell-model states in 91Zr. The Q value is about 5 MeV, so an incident 
deuteron at 5 MeV gives a proton at about 10 MeV, less any excitation in 91Zr. 
Since at these energies pa = Pb = 140 MeV/c, Equation 11.57 gives 

2c2papb(2 sin2 e/2)]1'2 E 8 sin - e 
ti 2c 2 / R  2 

e= [ 
For each angular momentum transfer, we expect to find outgoing protons at the 
following angles: &= 0, 0"; d= 1, 14"; d= 2, 29"; d= 3, 44". 

This simple semiclassical estimate will be changed by the intrinsic spins of the 
particles, which we neglected. There will also be interference between scatterings 
that occur on opposite sides of the nucleus, as shown in Figure 11.22. These 
interferences result in maxima and minima in the angular distributions. 

Figure 11.23 shows the result of studies of (d, p) reactions on 90Zr. You can see 
several low-lying states in the proton spectrum, and from their angular distribu- 
tions we can assign them to specific spins and parities in 91Zr. Notice the 
appearance of maxima and minima in the angular distribution. The angular 
momentum transfer, as usual, also gives us the change in parity of the reactions, 
d= even for no change in parity and d= odd for a change in parity. If we are 
studying shell-model states in o d d 4  nuclei by single-particle transfer reactions 
such as (d, p), we will use an even-2, even-N nucleus as target, and so the initial 
spin and parity are 0'. If the orbital angular momentum transferred is d, then 
the final nuclear state reached will be d+ +, allowing for the contribution of the 
spin of the transferred nucleon. For d= 2, for instance, we can reach states of 

The complete theory of direct reactions is far too detailed for this text, but we 
can sketch the outline of the calculation as an exercise in applications of the 
principles of quantum mechanics. The transition amplitude for the system to go 
from the initial state (X + a) to the final state (Y + b) is governed by the usual 
quantum mechanical matrix element: 

j = 3 o r S  *, both with even parity. 

(1 1.5 8) 

The interaction V must be a very complicated function of many nuclear coordi- 
nates. A simplifying assumption is the plane-wave Born approximation, in which 
Jia and #,, are treated as plane waves. Expanding the resulting exponential 
e i p . r / h  using a spherical wave expansion of the form of Equation 11.31 and 
making the simplifying assumption that the interaction takes place on the nuclear 
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Figure 11.23 (top) Proton spectrum from "Zr(d, p)"Zr. Peaks are identified with 
the final states in ''Zr populated. The large peak at the left is from a carbon 
impurity. (bottom) Angular distributions fitted to determine the t' value. Note that 
the location of the first maximum shifts to larger angles with increasing L', as 
predicted by Equation 11 57. See Figure 11.24 for the deduced excited states. Data 
from H. P. Blok et al., Nucl. Phys. A 273, 142 (1976). 
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surface, so the integral is evaluated only at r = R ,  the matrix element is 
proportional to j,( k R )  where k = p / h  contains the explicit angular dependence 
through Equation 11.57. The cross section then depends on [ j , (kR)I2,  which 
gives results of the form of Figure 11.23. 

Taking this calculation one step further, we use the optical model to account 
for the fact that the incoming and outgoing plane waves are changed (or 
distorted) by the nucleus. This gives the distorted-wave Born approximation, or 
DWBA. We can even put in explicit shell-model wave functions for the final 
state, and ultimately we find a differential cross section for the reaction. Because 
there are no " pure" shell-model states, the calculated cross section may describe 
many different final states. Each will have a differential cross section whose shape 
can be accurately calculated based on this model, but the amplitude of the cross 
section for any particular state depends on the fraction of the pure shell-model 
state included in the wave function for that state. The measured cross section is 
thus reduced from the calculated shell-model single-particle value by a number 
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Figure 11.24 Deduced level scheme for "Zr. Each G value (except zero) de- 
duced from the angular distributions of Figure 11.23 leads to a definite parity 
assignment but to two possible I values, Gf $. Which one is correct must be 
determined from other experiments. The fraction of the single-particle strengths 
represented by each level is indicated by the length of the shading; thus the ground 
state is nearly pure d5,2 shell-model state. 
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called the spectroscopic factor S :  

(11 -59) 

A pure shell-model state would have S = 1. In practice we often find the 
shell-model wave function to be distributed over many states. Figure 11.24 shows 
examples of the spectroscopic factors measured for 91Zr. 

1 1 .i 2 RESONANCE REACTIONS 
The compound-nucleus model of nuclear reactions treats the unbound nuclear 
states as if they formed a structureless continuum. That is, there may be discrete 
nuclear states, but there are so many of them and they are so close together that 
they form a continuous spectrum. Each of these supposed discrete states is 
unstable against decay and therefore has a certain width; when the states are so 
numerous that their spacing is much less than the widths of the individual states, 
the compound-nucleus continuum results. 

The bound states studied by direct reactions are at the opposite end of the 
scale. Because they are stable against particle emission, their mean lives are much 
longer (for example, characteristic of y decay) and their corresponding widths are 
much smaller. A state with a lifetime of 1 ps, for instance, has a width of about 

eV, far smaller than the typical spacing of bound states. We are therefore 
justified in treating these as discrete states with definite wavefunctions. 

Between these two extremes is the resonance region-discrete levels in the 
compound-nucleus region. These levels have a high probability of formation 
(large cross sections), and their widths are very small because at low incident 
energy, where these resonances are most likely to occur, the quasibound state that 
is formed usually has only two modes of decay available to it-re-ejecting the 
incident particle, as in elastic or inelastic scattering, or y emission. 

To obtain a qualitative understanding of the formation of resonances, we 
represent the nuclear potential seen by the captured particle as a square well. The 
oscillatory wave functions inside and outside the well must be matched smoothly, 
as we did in Figure 4.7a for nucleon-nucleon scattering. Figure 11.25 shows 
several examples of how this might occur. Depending on the phase of the wave 
function inside the nucleus, the smooth matching can result in substantial 
variations between the relative amplitudes of the wave functions inside and 
outside the nucleus. In case ( a ) ,  the incident particle has relatively little probabil- 
ity to penetrate the nucleus and form a quasibound state; in case ( c ) ,  there is a 
very high probability to penetrate. As we vary the energy of the incident particle, 
we vary the relative phase of the inner and outer wave functions; the location of 
the matching point and the relative amplitudes vary accordingly. Only for certain 
incident energies do we achieve the conditions shown in part ( c )  of Figure 11.25. 
These are the energies of the resonances in the cross section. 

In a single, isolated resonance of energy E ,  and width I?, the energy profile of 
the cross section in the vicinity of the resonance will have the character of the 
energy distribution of any decaying state of lifetime 7 = A/r; see, for example, 
Equation 6.20 or Figure 6.3. The resonance will occur where the total cross 
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r = R  

Figure 11.25 (a )  Far from resonance, the exterior and interior wave functions 
match badly, and little penetration of the nucleus occurs. ( b )  As the match 
improves, there is a higher probability to penetrate. (c) At resonance the ampli- 
tudes match exactly, the incident particle penetrates easily, and the cross section 
rises to a maximum. 

section has a maximum; from Equation 11.48, assuming only one partial wave f 
is important for the resonant state, there will be a scattering resonance where 
ve = - 1, corresponding to a phase shift 8, = ~ / 2 .  

The shape of the resonance can be obtained by expanding the phase shift 
about the value S,= ~ / 2 .  Better convergence of the Taylor series expansion is 
obtained if we expand the cotangent of 8,: 

cot 8 , ( E )  = cot8/(E,) + ( E  - E R )  

in which 

Defining the width r as 

(11.61) 

(11.62) 
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then it can be shown that the second-order term vanishes, and thus (neglecting 
higher-order terms) 

(11.63) 

Because r is the full width of the resonance, the cross section should fall to half 
of the central value at E - E ,  = &r/2. From Equation 11.63, this occurs when 
cot S,= f l ,  or S,= 7~/4, 377/4 (compared with S f =  7~/2 at the center of the 
resonance). The cross section depends on sin26[, which does indeed fall to half 
the central value at 6,' 7~/4 and 37~/4. The width defined by Equation 11.62 is 
thus entirely consistent with the width shown in Figure 6.3. 

From Equation 11.63, we find 

r/2 
[ ( E  - E , ) ~  + sin 6, = (11.64) 

and the scattering cross section becomes, using Equation 11.45 

7T r2 

k 2  
USC = -(2&+ 1) (11.65) 

( E  - E , ) ~  + r2/4 

Thls result 
for the effecl 
incident and 
resonance, 

can be generalized in two ways. In the first place, we can account 
of reacting particles with spin. If s, and sx are the spins of the 
target particles, and if I is the total angular momentum of the 

I = s, + sx + e (11.66) 

then the factor (2&+ 1) in Equation 11.65 should be replaced by the more 
general statistical factor 

2 I + l  
= (2s, + 1)(2s, + 1) 

(11.67) 

Note that g reduces to (2&+ 1) for spinless particles. 
The second change we must make is to allow for partial entrance and exit 

widths. If the resonance has many ways to decay, then the total width r is the 
sum of all the partial widths ri 

r = Cri (11.68) 
i 

The r2 factor in the denominator of Equation 11.65 is related to the decay width 
of the resonant state and therefore to its lifetime: = A/r. The observation of 
only a single entrance or exit channel does not affect this factor, for the 
resonance always decays with the same lifetime T .  In the analogous situation in 
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Figure 1 1.26 130-eV neutron resonance in scattering from 59C0. Part (a) shows 
the intensity of neutrons transmitted through a target of 59C0; at the resonance 
there is the highest probability for a reaction and the intensity of the transmitted 
beam drops to a minimum. In (b), the y-ray yield is shown for neutron radiative 
capture by 59C0. Here the yield of y rays is maximum where the reaction has the 
largest probability. From J. E. Lynn, The Theory of Neutron Resonance Reactions 
(Oxford: Clarendon, 1968). 
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radioactive decay, the activity decays with time according to the total decay 
constant, even though we might observe only a single branch with a very different 
partial decay constant. The r2  factor in the numerator, on the other hand, is 
directly related to the formation of the resonance and to its probability to decay 
into a particular exit channel. In the case of elastic scattering, for which Equation 
11.65 was derived, the entrance and exit channels are identical. That is, for the 
reaction a + X -+ a + X, we should use the partial widths Tax of the entrance 
and exit channels: 

Similarly, for the reaction a + X + b + Y, a different 

(11.69) 

exit width must be used: 

(11.70) 

Equations 11.69 and 11.70 are examples of the Breit-Wigner formula for the 
shape of a single, isolated resonance. Figure 11.26 shows such a resonance with 
the Breit-Wigner shape. The cross section for resonant absorption of y radiation 
has a similar shape, as given by Equations 10.29 and 10.30. 

Many elastic scattering resonances have shapes slightly different from that 
suggested by the Breit-Wigner formula. This originates with another contribution 
to the reaction amplitude from direct scattering of the incident particle by the 
nuclear potential, without forming the resonant state. This alternative process is 
called potential scattering or shape-elastic scattering. Potential scattering and 

ER E 

Figure 1 1.27 Interference between resonance and potential scattering produces 
resonances with this characteristic shape. 
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resonant scattering both 
interference between the 
Interference can cause the 
for either process alone. 

contribute to the elastic scattering amplitude, and 
two processes causes variation in the cross section. 
combined cross section to be smaller than it would be 
It is therefore not correct simply to add the cross 

sections for the two processes. We can account for the two processes by writing 

where S,, is the resonant phase shift, as in Equations 11.63 or 11.64, and S,, is 
an additional contribution to the phase shift from potential scattering. From 

Ocm = 131.6' 

1115 1120 1125 
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Figure 11.28 Resonances in the reaction 27Al(p, P ) ~ ~ A I .  The resonances occur in 
the nucleus 28Si. Note that the (p, y) yield shows a resonance at the same energy. 
From A. Tveter, Nucl. Phys. A 185, 433 (1972). 
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Equation 11.44 we find the cross section 

Far from the resonance, ( E  - E R )  >> r /2  and the potential scattering term 
dominates : 

457 
k 

o z spot = ,(2e+ 1)sin26,, (11.73) 

At E = E,, the resonant term dominates and 

47T 
k 2  

(7 z Ores = -(2e+ 1) (11.74) 

Near the resonance there is interference between the two terms, which produces 
the characteristic shape shown in Figure 11.27. According to this model, we 
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Figure 11.29 Resonances observed in the radiative proton capture by 23Na. In 
this case, the total yield of y rays in the energy range 3 - 13 MeV was measured as 
a function of the incident proton energy. The CI peaks appear because the target 
used was NaCI. From P. W. M. Glaudemans and P. M. Endt, Nucl. Phys. 30, 30 
(1 962). 
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expect an interference “dip” on the low-E side of the resonance. The resonance 
height should decrease roughly as k - 2  (that is, as E - ’ )  with increasing incident 
energy, and the nonresonant “ background” from potential scattering should 
remain roughly constant. Figure 11.28 shows scattering cross sections with the 
resonant structure clearly visible. The expectations of the resonance model are 
clearly fulfilled. 

Radiative capture reactions also show a resonant structure. Figure 11.29 shows 
examples of (p, y )  reactions. Note that this is not a y spectrum in the conven- 
tional sense-the horizontal axis shows the incident proton energy, not the 
emitted y energy. 

Resonances observed in neutron scattering are discussed in more detail in 
Chapter 12. 

1 1 .13 HEAVY-ION REACTIONS 

From the point of view of nuclear reactions, a heavy ion is defined to be any 
projectile with A > 4. Accelerators devoted to the study of heavy-ion reactions 
can produce beams of ions up to 238U, at typical energies of the order of 1-10 
MeV per nucleon, although much higher energies are also possible. 

The variety of processes than can occur in heavy-ion reactions is indicated 
schematically in Figure 11.30. At large impact parameters, Coulomb effects 
dominate, and Rutherford scattering or Coulomb excitation may occur. When 
the nuclear densities of the target and projectile just begin to overlap, nuclear 
reactions can occur, and at small overlap ordinary elastic or inelastic scattering 
and few-nucleon transfer through direct reactions may occur, as discussed 
previously in this chapter. 

Nuclear scattering, 

scattering \ 
Figure 11.30 Processes in heavy-ion scattering depend on the impact parame- 
ter, when energies are large enough to penetrate the Coulomb barrier. 


