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D
Relations for Pauli and Dirac Matrices

D.1
Pauli Spin Matrices

The Pauli spin matrices introduced in Eq. (4.140) fulfill some important rela-
tions. First of all, the squared matrices yield the (2×2) unit matrix 12,

σ2
x = σ2

y = σ2
z =

(
1 0
0 1

)
= 12 (D.1)

which is an essential property when calculating the square of the spin opera-
tor. Next, multiplication of two different Pauli spin matrices yields the third
one multiplied by the (positive or negative) imaginary unit,

σxσy = iσz , σxσz = −iσy , σyσz = iσx (D.2)

σyσx = −iσz , σzσx = iσy , σzσy = −iσx (D.3)

This may be expressed in more compact form for all cyclic permutations of
i, j, k ∈ {1, 2, 3} as

σiσj = δij12 + i
3

∑
k=1

εijkσk (D.4)

where {1, 2, 3} and {x, y, z} are used synonymously. As a direct consequence
of Eq. (D.4) the commutation and anticommutation relations for Pauli spin
matrices are given by

[
σi , σj

]
= 2i

3

∑
k=1

εijkσk and
{

σi , σj
}

= 2δij12 (D.5)

These relations may be generalized to the four-component case if we consider
the even matrix Σ and the Dirac matrices α and β; cf. chapter 5, for which we
have

α2
x = α2

y = α2
z = β2 = 14 (D.6)
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αiαj = 12 ⊗ σiσj =

(
σiσj 0

0 σiσj

)
(D.7)

so that commutators and anticommutators read

[
αi , αj

]
= 2i

3

∑
k=1

εijkΣk (D.8){
αi , αj

}
= 2δij14 and

{
αi , β

}
= 0 (D.9)

The tensor product denoted by ‘⊗’ is to be evaluated according to the general
prescription

(
a11 a12
a21 a22

)
⊗
(

b11 b12
b21 b22

)
=

⎛⎜⎜⎝
a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a12b11 a22b12
a21b21 a21b22 a12b21 a22b22

⎞⎟⎟⎠ (D.10)

D.2
Dirac’s Relation

A relation that is often exploited in the book is Dirac’s relation [66], which for
two arbitrary vector operators A and B reads

(σ · A)(σ · B) = A · B 12 + iσ · (A × B) (D.11)

where the (2×2) unit matrix 12 is usually omitted. This relation can be verified
by evaluating the scalar products on the left hand side of the relation,

(σ · A)(σ · B) = (σx Ax + σy Ay + σz Az)(σxBx + σyBy + σzBz)

= σ2
x AxBx + σxσy AxBy + σxσz AxBz + σyσx AyBx + σ2

y AyBy

+σyσz AyBz + σzσx AzBx + σzσy AzBy + σ2
z AzBz

= AxBx + AyBy + AzBz + iσz AxBy − iσy AxBz

−iσz AyBx + iσx AyBz + iσy AzBx − iσx AzBy

= A · B + iσ · (A × B) (D.12)

if we use the relations of the Pauli spin matrices given in appendix D.1. This
proof can also be given in more compact form as

(σ · A)(σ · B) =
3

∑
i,j=1

σi AiσjBj (D.13)

(D.4)
=

3

∑
i,j=1

(
δij12 + i

3

∑
k=1

εijkσk

)
AiBj (D.14)
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(A.6)
=

3

∑
i=1

AiBi + i
3

∑
k=1

σk(A × B)k (D.15)

= A · B + iσ · (A × B) (D.16)

Obviously, if A = B the Dirac relation simplifies to

(σ · A)2 = A2 + iσ · (A × A) (D.17)

which reads in the case of A = p

(σ · p)2 = p2 (D.18)

because p × p = 0.

D.2.1
Momenta and Vector Fields

The situation is more complicated in the presence of vector potentials, where
we have

(σ · π)(σ · π) = π
2 + iσ · (π × π) (D.19)

By noting that π = p − qe
c A the vector product of the kinematical momentum

operator with itself can be simplified to

π × π = − qe
c
(

p × A + A × p
)

= −ih̄
qe
c
(∇× A + A ×∇) (D.20)

since the vector products of the canonical momentum p and the vector poten-
tial A with themselves vanish, respectively. We now consider the action of the
i-th component of the operator ∇× A on a two-component spinor ψL,

(∇× AψL)
i =

3

∑
j,k=1

εijk∂j(AkψL)

=
3

∑
j,k=1

εijk(∂j Ak)ψL +
3

∑
j,k=1

εijk Ak(∂jψ
L)

= Biψ
L − (

A ×∇ψL)
i (D.21)

where we have employed B = ∇× A in the last step (where now A is not some
general vector but the electromagnetic vector potential, of course.) This im-
mediately implies for the vector product of the kinematical momentum with
itself

π × π =
ih̄qe

c
B (D.22)
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and yields thus the final result

(σ · π)(σ · π) = π
2 − qe h̄

c
σ · B (D.23)

D.2.2
Four-Dimensional Generalization

Dirac’s relation can also be generalized to the four-component framework if σ

is substituted by α,

(α · A)(α · B) = 12 ⊗ [(A · B) 12 + iσ · (A × B)] (D.24)

= (A · B) 14 + i Σ · (A × B) (D.25)

because

(α · A)(α · B) =

(
(σ · A)(σ · B) 0

0 (σ · A)(σ · B)

)
(D.26)

which is a (4×4)-matrix.
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