D
Relations for Pauli and Dirac Matrices

D.1
Pauli Spin Matrices

The Pauli spin matrices introduced in Eq. (4.140) fulfill some important rela-
tions. First of all, the squared matrices yield the (2x2) unit matrix 15,

1 0
0’%—0’5—0’3—(0 1)_12 (D.1)

which is an essential property when calculating the square of the spin opera-
tor. Next, multiplication of two different Pauli spin matrices yields the third
one multiplied by the (positive or negative) imaginary unit,

Ox0y = 0y , Ox0; = —ioy , 0Oy0y = i0y (D.2)

oyox = —ioy , 0z0x = i0y , 070y = —i0y (D.3)
This may be expressed in more compact form for all cyclic permutations of
i,j, ke {1,2,3}as

3
oi0j = 51']'12 + iZSi]-kU'k (D.4)
k=1

where {1,2,3} and {x,y,z} are used synonymously. As a direct consequence
of Eq. (D.4) the commutation and anticommutation relations for Pauli spin
matrices are given by

3
[0’1‘, 0}] = 2i Z Sijkak and {0’1', 0']} = 251‘]'12 (D5)
k=1

These relations may be generalized to the four-component case if we consider
the even matrix X and the Dirac matrices « and S; cf. chapter 5, for which we
have

W2 =02 =a=p=1 (D.6)

Relativistic Quantum Chemistry. Markus Reiher and Alexander Wolf
Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

ISBN: 978-3-527-31292-4

597



598

D Relations for Pauli and Dirac Matrices

gio;i 0
ajj = I ®oo; = < 0] o0, > (D.7)
so that commutators and anticommutators read
3
(i, 0] = 2i) ey (D.8)
k=1
{wi,a;} = 2614  and {a;, B} =0 (D.9)

The tensor product denoted by ‘®” is to be evaluated according to the general
prescription

a1bir  anbiy  apbn apbiz
( ay ap )®< bi1 b2 ) _ | anba anbn  apby  apbxn (D.10)
ax;  ax by1 b2 ax1by1  apbiy  apbi  axnbip '
ar1by1  anby appby  axbn

D.2
Dirac’s Relation

A relation that is often exploited in the book is Dirac’s relation [66], which for
two arbitrary vector operators A and B reads

(r-A)(c-B)=A -B1l,+ic- (A x B) (D.11)

where the (2x2) unit matrix 1, is usually omitted. This relation can be verified
by evaluating the scalar products on the left hand side of the relation,

(c-A)(c-B) = (0xAx+o0yAy+0:Az)(0xBx +0yBy +0:B;)
= U,%AXBX + 0x0yAxBy + 050, AxB; + 0y0x Ay By + ajAyBy
+0y0z AyB; + 020y Az By + 0,0y Az By + UZAZBZ
= AyxBy+ AyBy + A;B; +i0; AyBy —i0y AxB;
—i0; AyBy +i0xAyB; +i0y, Az By —i0x A By
= A-B+ic-(AxB) (D.12)

if we use the relations of the Pauli spin matrices given in appendix D.1. This
proof can also be given in more compact form as

3
(¢-A)(c-B) = Y 0iAj0;B, (D.13)
ij=1
(D4) & .
= Z 5,‘]'12 + lzsijko-k A,‘B]' (D.14)
ij=1 k=1
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D.2 Dirac’s Relation

(A6) & 3
=" Y AB; + i) 0i(AxB) (D.15)
i=1 k=1
= A-B+ic-(AxB) (D.16)

Obviously, if A = B the Dirac relation simplifies to

(0-A)? =A% +ioc-(AxA) (D.17)
which reads in the case of A = p

(c-p)?=p (D.18)
because p x p = 0.

D.2.1
Momenta and Vector Fields

The situation is more complicated in the presence of vector potentials, where
we have

(0-m)(o-m) =% +ic- (1 x ) (D.19)

By noting that 7t = p — L A the vector product of the kinematical momentum
operator with itself can be simplified to

TXT = —%(pr—kAxp)

—inT(Vx A+ Ax V) (D.20)

since the vector products of the canonical momentum p and the vector poten-
tial A with themselves vanish, respectively. We now consider the action of the
i-th component of the operator V x A on a two-component spinor i,

3
(VxAyh), = ) epd;(Agh)
k=1

3 3
= Y (@ A0Y" + Y einAr(9yh)
jk=1 jk=1
= Byt — (Ax Vyh), (D.21)
where we have employed B = V x A in the last step (Where now A is not some
general vector but the electromagnetic vector potential, of course.) This im-

mediately implies for the vector product of the kinematical momentum with
itself

Txm = —B (D.22)
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and yields thus the final result
2 gelt
(c-m)(o-m)=m —TO'-B (D.23)

D.2.2
Four-Dimensional Generalization

Dirac’s relation can also be generalized to the four-component framework if o
is substituted by «,

(0-A)(e-B) = 1,®[(A-B)1;+ic- (A x B)] (D.24)
= (A-B)14,+iXL-(AxB) (D.25)
because

which is a (4 x4)-matrix.
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