🎯 Learning Objectives:
- Access Google Docs in Desktop Mode on Mobile to enable full functionality for editing scientific documents.
- Install and Use the Auto-LaTeX Equations Add-on in Google Docs for rendering LaTeX-formatted equations.
- Write LaTeX Equations using \(...\) Delimiters and render them correctly within Google Docs.
- Configure Keyboard Shortcuts for LaTeX Syntax to speed up equation writing in supported editors.
- Utilize a Quick-Reference LaTeX Cheat Sheet for common math expressions and Greek letters.
- Apply LaTeX to Write Physics Equations across key subjects: Quantum Mechanics, Classical Mechanics, Electrodynamics, and Optics.
📱 Google Docs in Desktop Site Mode
✅ Android (Chrome Browser)
- Open Chrome browser.
- Go to https://docs.google.com.
- Tap three dots (⋮) at the top-right.
- Select “Desktop site”.
- Now Google Docs opens in full desktop view.
- Open or create a Google Doc.
🧩 Installation Of Auto-LaTeX
- In the document menu bar, go to Extensions → Add-ons → Get Add-ons.
- Search for Auto-LaTeX Equations. Alternatively can use this link Auto-LaTeX Equations
- Click Install and allow required permissions.
- Access it from:
Extensions → Auto-LaTeX Equations → Start
✍️ How to Write Equations using $$...$$
- Use double dollar signs
latex $$...$$
to enclose LaTeX code. - Example:
$$\frac{E}{m} = c^2$$
- After writing all equations, go to:
Extensions → Auto-LaTeX Equations → Render Equations
⌨️ Keyboard Shortcuts for LaTeX (Using Substitutions)
To speed up LaTeX typing in your editor (like \frac{}{}, \(\), etc.), you can define custom keyboard shortcuts by going to:
🛠️ Tools → Preferences → Substitutions
Here are some useful shortcuts you can add:
Shortcut | Expands To |
---|---|
dd |
$$ $$ |
ba |
$$\begin{aligned} \end{aligned}$$ |
la |
\left( \right) |
fr |
\frac{}{} |
bam |
$$\left(\begin{array}{ccc} & & \\ & & \\ & & \end{array}\right)$$ |
📝 Example Workflow
Type fr
and press space or trigger the substitution to quickly get:
\frac{}{}
📘 Common LaTeX Syntax Cheat Sheet
🔢 Math Operations
Expression | LaTeX Code | Output |
---|---|---|
Fraction | \frac{a}{b} |
$\frac{a}{b}$ |
Square root | \sqrt{x} |
$\sqrt{x}$ |
nth root | \sqrt[n]{x} |
$\sqrt[n]{x}$ |
Superscript | x^2 , x^{10} |
$x^2$, $x^{10}$ |
Subscript | x_1 , x_{ij} |
$x_1$, $x_{ij}$ |
Summation | \sum_{i=1}^n |
$\sum_{i=1}^n$ |
Integral | \int_a^b |
$\int_a^b$ |
Partial Derivative | \frac{\partial f}{\partial x} |
$\frac{\partial f}{\partial x}$ |
Vector | \vec{A} |
$\vec{A}$ |
Dot product | \vec{A} \cdot \vec{B} |
$\vec{A} \cdot \vec{B}$ |
Cross product | \vec{A} \times \vec{B} |
$\vec{A} \times \vec{B}$ |
Arrows | \rightarrow , \Rightarrow |
$\rightarrow$, $\Rightarrow$ |
Infinity | \infty |
$\infty$ |
🇬 Greek Letters in LaTeX
✅ Lowercase
Symbol | Code | Symbol | Code |
---|---|---|---|
$\alpha$ | \alpha |
$\nu$ | \nu |
$\beta$ | \beta |
$\xi$ | \xi |
$\gamma$ | \gamma |
$o$ | o (Latin o) |
$\delta$ | \delta |
$\pi$ | \pi |
$\epsilon$ | \epsilon |
$\rho$ | \rho |
$\zeta$ | \zeta |
$\sigma$ | \sigma |
$\eta$ | \eta |
$\tau$ | \tau |
$\theta$ | \theta |
$\upsilon$ | \upsilon |
$\iota$ | \iota |
$\phi$ | \phi |
$\kappa$ | \kappa |
$\chi$ | \chi |
$\lambda$ | \lambda |
$\psi$ | \psi |
$\mu$ | \mu |
$\omega$ | \omega |
✅ Uppercase
Symbol | Code | Symbol | Code |
---|---|---|---|
$\Gamma$ | \Gamma |
$\Lambda$ | \Lambda |
$\Delta$ | \Delta |
$\Xi$ | \Xi |
$\Theta$ | \Theta |
$\Pi$ | \Pi |
$\Sigma$ | \Sigma |
$\Phi$ | \Phi |
$\Psi$ | \Psi |
$\Omega$ | \Omega |
📘 Physics Equations Examples
⚛️ Quantum Mechanics (5)
- Time-dependent Schrödinger Equation
\(i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)\)$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)$$
- Momentum Operator
\(\hat{p} = -i\hbar \nabla\)$$\hat{p} = -i\hbar \nabla$$
- Energy of a Quantum Harmonic Oscillator
\(E_n = \left(n + \frac{1}{2}\right)\hbar \omega\)$$E_n = \left(n + \frac{1}{2}\right)\hbar \omega$$
- Commutation Relation
\([\hat{x}, \hat{p}] = i\hbar\)$$[\hat{x}, \hat{p}] = i\hbar$$
- Heisenberg Uncertainty Principle
\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\)$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$
🏛️ Classical Mechanics (5)
- Newton’s Second Law
\(F = ma\)$$F = ma$$
- Work-Energy Theorem
\(W = \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mu^2\)$$W = \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$$
- Conservation of Angular Momentum
\(\vec{L} = \vec{r} \times \vec{p}\)$$\vec{L} = \vec{r} \times \vec{p}$$
- Lagrange’s Equation
\(\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0\)$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$
- Hamilton’s Equations
\(\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}\)$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$
⚡ Electrodynamics (5)
- Coulomb’s Law
\(F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}\)$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$
- Gauss’s Law for Electricity
\(\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\)$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
- Faraday’s Law of Induction
\(\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\)$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
- Ampère-Maxwell Law
\(\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}\)$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$
- Lorentz Force Law
\(\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})\)$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$
🔍 Optics (3)
- Snell’s Law
\(n_1 \sin \theta_1 = n_2 \sin \theta_2\)$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
- Lens Formula
\(\frac{1}{f} = \frac{1}{v} - \frac{1}{u}\)$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$
- Interference Condition (Thin Film)
\(\delta = \frac{2\pi}{\lambda}(n - 1)t\)$$\delta = \frac{2\pi}{\lambda}(n - 1)t$$
☢️ Nuclear Physics (3)
- Radioactive Decay Law
\(N(t) = N_0 e^{-\lambda t}\)$$N(t) = N_0 e^{-\lambda t}$$
- Binding Energy per Nucleon
\(E_b = \frac{(Z m_p + N m_n - M)c^2}{A}\)$$E_b = \frac{(Z m_p + N m_n - M)c^2}{A}$$
- Q-value of a Nuclear Reaction
\(Q = (m_{\text{initial}} - m_{\text{final}})c^2\)$$Q = (m_{\text{initial}} - m_{\text{final}})c^2$$