Google Docs + LaTeX on Mobile
🎯 Learning Objectives:
- Access Google Docs in Desktop Mode on Mobile to enable full functionality for editing scientific documents.
- Install and Use the Auto-LaTeX Equations Add-on in Google Docs for rendering LaTeX-formatted equations.
- Write LaTeX Equations using \(...\) Delimiters and render them correctly within Google Docs.
- Configure Keyboard Shortcuts for LaTeX Syntax to speed up equation writing in supported editors.
- Utilize a Quick-Reference LaTeX Cheat Sheet for common math expressions and Greek letters.
- Apply LaTeX to Write Physics Equations across key subjects: Quantum Mechanics, Classical Mechanics, Electrodynamics, and Optics.
📱 Google Docs in Desktop Site Mode
✅ Android (Chrome Browser)
- Open Chrome browser.
- Go to https://docs.google.com.
- Tap three dots (⋮) at the top-right.
- Select “Desktop site”.
- Now Google Docs opens in full desktop view.
- Open or create a Google Doc.
🧩 Installation Of Auto-LaTeX
- In the document menu bar, go to Extensions → Add-ons → Get Add-ons.
- Search for Auto-LaTeX Equations. Alternatively can use this link Auto-LaTeX Equations
- Click Install and allow required permissions.
- Access it from:
Extensions → Auto-LaTeX Equations → Start
✍️ How to Write Equations using $$...$$
- Use double dollar signs
latex $$...$$to enclose LaTeX code. - Example:
$$\frac{E}{m} = c^2$$ - After writing all equations, go to:
Extensions → Auto-LaTeX Equations → Render Equations
⌨️ Keyboard Shortcuts for LaTeX (Using Substitutions)
To speed up LaTeX typing in your editor (like \frac{}{}, \(\), etc.), you can define custom keyboard shortcuts by going to:
🛠️ Tools → Preferences → Substitutions
Here are some useful shortcuts you can add:
| Shortcut | Expands To |
|---|---|
dd |
$$ $$ |
ba |
$$\begin{aligned} \end{aligned}$$ |
la |
\left( \right) |
fr |
\frac{}{} |
bam |
$$\left(\begin{array}{ccc} & & \\ & & \\ & & \end{array}\right)$$ |
📝 Example Workflow
Type fr and press space or trigger the substitution to quickly get:
\frac{}{}
📘 Common LaTeX Syntax Cheat Sheet
🔢 Math Operations
| Expression | LaTeX Code | Output |
|---|---|---|
| Fraction | \frac{a}{b} |
$\frac{a}{b}$ |
| Square root | \sqrt{x} |
$\sqrt{x}$ |
| nth root | \sqrt[n]{x} |
$\sqrt[n]{x}$ |
| Superscript | x^2, x^{10} |
$x^2$, $x^{10}$ |
| Subscript | x_1, x_{ij} |
$x_1$, $x_{ij}$ |
| Summation | \sum_{i=1}^n |
$\sum_{i=1}^n$ |
| Integral | \int_a^b |
$\int_a^b$ |
| Partial Derivative | \frac{\partial f}{\partial x} |
$\frac{\partial f}{\partial x}$ |
| Vector | \vec{A} |
$\vec{A}$ |
| Dot product | \vec{A} \cdot \vec{B} |
$\vec{A} \cdot \vec{B}$ |
| Cross product | \vec{A} \times \vec{B} |
$\vec{A} \times \vec{B}$ |
| Arrows | \rightarrow, \Rightarrow |
$\rightarrow$, $\Rightarrow$ |
| Infinity | \infty |
$\infty$ |
🇬 Greek Letters in LaTeX
✅ Lowercase
| Symbol | Code | Symbol | Code |
|---|---|---|---|
| $\alpha$ | \alpha |
$\nu$ | \nu |
| $\beta$ | \beta |
$\xi$ | \xi |
| $\gamma$ | \gamma |
$o$ | o (Latin o) |
| $\delta$ | \delta |
$\pi$ | \pi |
| $\epsilon$ | \epsilon |
$\rho$ | \rho |
| $\zeta$ | \zeta |
$\sigma$ | \sigma |
| $\eta$ | \eta |
$\tau$ | \tau |
| $\theta$ | \theta |
$\upsilon$ | \upsilon |
| $\iota$ | \iota |
$\phi$ | \phi |
| $\kappa$ | \kappa |
$\chi$ | \chi |
| $\lambda$ | \lambda |
$\psi$ | \psi |
| $\mu$ | \mu |
$\omega$ | \omega |
✅ Uppercase
| Symbol | Code | Symbol | Code |
|---|---|---|---|
| $\Gamma$ | \Gamma |
$\Lambda$ | \Lambda |
| $\Delta$ | \Delta |
$\Xi$ | \Xi |
| $\Theta$ | \Theta |
$\Pi$ | \Pi |
| $\Sigma$ | \Sigma |
$\Phi$ | \Phi |
| $\Psi$ | \Psi |
$\Omega$ | \Omega |
📘 Physics Equations Examples
⚛️ Quantum Mechanics (5)
- Time-dependent Schrödinger Equation
\(i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)\)$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)$$ - Momentum Operator
\(\hat{p} = -i\hbar \nabla\)$$\hat{p} = -i\hbar \nabla$$ - Energy of a Quantum Harmonic Oscillator
\(E_n = \left(n + \frac{1}{2}\right)\hbar \omega\)$$E_n = \left(n + \frac{1}{2}\right)\hbar \omega$$ - Commutation Relation
\([\hat{x}, \hat{p}] = i\hbar\)$$[\hat{x}, \hat{p}] = i\hbar$$ - Heisenberg Uncertainty Principle
\(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\)$$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$
🏛️ Classical Mechanics (5)
- Newton’s Second Law
\(F = ma\)$$F = ma$$ - Work-Energy Theorem
\(W = \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mu^2\)$$W = \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$$ - Conservation of Angular Momentum
\(\vec{L} = \vec{r} \times \vec{p}\)$$\vec{L} = \vec{r} \times \vec{p}$$ - Lagrange’s Equation
\(\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0\)$$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$ - Hamilton’s Equations
\(\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}\)$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$
⚡ Electrodynamics (5)
- Coulomb’s Law
\(F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}\)$$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$ - Gauss’s Law for Electricity
\(\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\)$$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$ - Faraday’s Law of Induction
\(\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\)$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$ - Ampère-Maxwell Law
\(\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}\)$$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$ - Lorentz Force Law
\(\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})\)$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$
🔍 Optics (3)
- Snell’s Law
\(n_1 \sin \theta_1 = n_2 \sin \theta_2\)$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$ - Lens Formula
\(\frac{1}{f} = \frac{1}{v} - \frac{1}{u}\)$$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$ - Interference Condition (Thin Film)
\(\delta = \frac{2\pi}{\lambda}(n - 1)t\)$$\delta = \frac{2\pi}{\lambda}(n - 1)t$$
☢️ Nuclear Physics (3)
- Radioactive Decay Law
\(N(t) = N_0 e^{-\lambda t}\)$$N(t) = N_0 e^{-\lambda t}$$ - Binding Energy per Nucleon
\(E_b = \frac{(Z m_p + N m_n - M)c^2}{A}\)$$E_b = \frac{(Z m_p + N m_n - M)c^2}{A}$$ - Q-value of a Nuclear Reaction
\(Q = (m_{\text{initial}} - m_{\text{final}})c^2\)$$Q = (m_{\text{initial}} - m_{\text{final}})c^2$$