Google Docs + LaTeX on Mobile

🎯 Learning Objectives:

  • Access Google Docs in Desktop Mode on Mobile to enable full functionality for editing scientific documents.
  • Install and Use the Auto-LaTeX Equations Add-on in Google Docs for rendering LaTeX-formatted equations.
  • Write LaTeX Equations using \(...\) Delimiters and render them correctly within Google Docs.
  • Configure Keyboard Shortcuts for LaTeX Syntax to speed up equation writing in supported editors.
  • Utilize a Quick-Reference LaTeX Cheat Sheet for common math expressions and Greek letters.
  • Apply LaTeX to Write Physics Equations across key subjects: Quantum Mechanics, Classical Mechanics, Electrodynamics, and Optics.

📱 Google Docs in Desktop Site Mode

✅ Android (Chrome Browser)

  1. Open Chrome browser.
  2. Go to https://docs.google.com.
  3. Tap three dots (⋮) at the top-right.
  4. Select “Desktop site”.
  5. Now Google Docs opens in full desktop view.
  6. Open or create a Google Doc.

🧩 Installation Of Auto-LaTeX

  1. In the document menu bar, go to Extensions → Add-ons → Get Add-ons.
  2. Search for Auto-LaTeX Equations. Alternatively can use this link Auto-LaTeX Equations
  3. Click Install and allow required permissions.
  4. Access it from:
    Extensions → Auto-LaTeX Equations → Start

✍️ How to Write Equations using $$...$$

  • Use double dollar signs latex $$...$$ to enclose LaTeX code.
  • Example:
    $$\frac{E}{m} = c^2$$
    
  • After writing all equations, go to:
    Extensions → Auto-LaTeX Equations → Render Equations

⌨️ Keyboard Shortcuts for LaTeX (Using Substitutions)

To speed up LaTeX typing in your editor (like \frac{}{}, \(\), etc.), you can define custom keyboard shortcuts by going to:

🛠️ Tools → Preferences → Substitutions

Here are some useful shortcuts you can add:

Shortcut Expands To
dd $$ $$
ba $$\begin{aligned} \end{aligned}$$
la \left( \right)
fr \frac{}{}
bam $$\left(\begin{array}{ccc} & & \\ & & \\ & & \end{array}\right)$$

📝 Example Workflow

Type fr and press space or trigger the substitution to quickly get:

\frac{}{}

📘 Common LaTeX Syntax Cheat Sheet

🔢 Math Operations

Expression LaTeX Code Output
Fraction \frac{a}{b} $\frac{a}{b}$
Square root \sqrt{x} $\sqrt{x}$
nth root \sqrt[n]{x} $\sqrt[n]{x}$
Superscript x^2, x^{10} $x^2$, $x^{10}$
Subscript x_1, x_{ij} $x_1$, $x_{ij}$
Summation \sum_{i=1}^n $\sum_{i=1}^n$
Integral \int_a^b $\int_a^b$
Partial Derivative \frac{\partial f}{\partial x} $\frac{\partial f}{\partial x}$
Vector \vec{A} $\vec{A}$
Dot product \vec{A} \cdot \vec{B} $\vec{A} \cdot \vec{B}$
Cross product \vec{A} \times \vec{B} $\vec{A} \times \vec{B}$
Arrows \rightarrow, \Rightarrow $\rightarrow$, $\Rightarrow$
Infinity \infty $\infty$

🇬 Greek Letters in LaTeX

✅ Lowercase

Symbol Code Symbol Code
$\alpha$ \alpha $\nu$ \nu
$\beta$ \beta $\xi$ \xi
$\gamma$ \gamma $o$ o (Latin o)
$\delta$ \delta $\pi$ \pi
$\epsilon$ \epsilon $\rho$ \rho
$\zeta$ \zeta $\sigma$ \sigma
$\eta$ \eta $\tau$ \tau
$\theta$ \theta $\upsilon$ \upsilon
$\iota$ \iota $\phi$ \phi
$\kappa$ \kappa $\chi$ \chi
$\lambda$ \lambda $\psi$ \psi
$\mu$ \mu $\omega$ \omega

✅ Uppercase

Symbol Code Symbol Code
$\Gamma$ \Gamma $\Lambda$ \Lambda
$\Delta$ \Delta $\Xi$ \Xi
$\Theta$ \Theta $\Pi$ \Pi
$\Sigma$ \Sigma $\Phi$ \Phi
$\Psi$ \Psi $\Omega$ \Omega

📘 Physics Equations Examples

⚛️ Quantum Mechanics (5)

  • Time-dependent Schrödinger Equation
    \(i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)\)
    $$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \hat{H} \Psi(x,t)$$
    
  • Momentum Operator
    \(\hat{p} = -i\hbar \nabla\)
    $$\hat{p} = -i\hbar \nabla$$
    
  • Energy of a Quantum Harmonic Oscillator
    \(E_n = \left(n + \frac{1}{2}\right)\hbar \omega\)
    $$E_n = \left(n + \frac{1}{2}\right)\hbar \omega$$
    
  • Commutation Relation
    \([\hat{x}, \hat{p}] = i\hbar\)
    $$[\hat{x}, \hat{p}] = i\hbar$$
    
  • Heisenberg Uncertainty Principle
    \(\Delta x \cdot \Delta p \geq \frac{\hbar}{2}\)
    $$\Delta x \cdot \Delta p \geq \frac{\hbar}{2}$$
    

🏛️ Classical Mechanics (5)

  • Newton’s Second Law
    \(F = ma\)
    $$F = ma$$
    
  • Work-Energy Theorem
    \(W = \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mu^2\)
    $$W = \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mu^2$$
    
  • Conservation of Angular Momentum
    \(\vec{L} = \vec{r} \times \vec{p}\)
    $$\vec{L} = \vec{r} \times \vec{p}$$
    
  • Lagrange’s Equation
    \(\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0\)
    $$\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0$$
    
  • Hamilton’s Equations
    \(\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}\)
    $$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$
    

⚡ Electrodynamics (5)

  • Coulomb’s Law
    \(F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}\)
    $$F = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r^2}$$
    
  • Gauss’s Law for Electricity
    \(\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\)
    $$\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$
    
  • Faraday’s Law of Induction
    \(\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\)
    $$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
    
  • Ampère-Maxwell Law
    \(\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}\)
    $$\nabla \times \vec{B} = \mu_0 \vec{J} + \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$
    
  • Lorentz Force Law
    \(\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})\)
    $$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$
    

🔍 Optics (3)

  • Snell’s Law
    \(n_1 \sin \theta_1 = n_2 \sin \theta_2\)
    $$n_1 \sin \theta_1 = n_2 \sin \theta_2$$
    
  • Lens Formula
    \(\frac{1}{f} = \frac{1}{v} - \frac{1}{u}\)
    $$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$$
    
  • Interference Condition (Thin Film)
    \(\delta = \frac{2\pi}{\lambda}(n - 1)t\)
    $$\delta = \frac{2\pi}{\lambda}(n - 1)t$$
    

☢️ Nuclear Physics (3)

  • Radioactive Decay Law
    \(N(t) = N_0 e^{-\lambda t}\)
    $$N(t) = N_0 e^{-\lambda t}$$
    
  • Binding Energy per Nucleon
    \(E_b = \frac{(Z m_p + N m_n - M)c^2}{A}\)
    $$E_b = \frac{(Z m_p + N m_n - M)c^2}{A}$$
    
  • Q-value of a Nuclear Reaction
    \(Q = (m_{\text{initial}} - m_{\text{final}})c^2\)
    $$Q = (m_{\text{initial}} - m_{\text{final}})c^2$$