Isospin is a quantum number that describes the symmetry between particles with similar properties but different electric charges. It was first proposed by Werner Heisenberg in 1932 to explain the near-degeneracy of protons and neutrons. These particles, collectively called nucleons, were found to behave similarly under the strong nuclear force, suggesting an underlying symmetry.
Isospin is represented by two quantum numbers:
- Total Isospin ($ I $): This can take integer or half-integer values (e.g., $ 0, \frac{1}{2}, 1, \frac{3}{2} $).
- Third Component of Isospin ($ I_3 $): This represents the projection of isospin along a chosen axis and can take values from $ -I $ to $ +I $ in integer steps.
For example:
- Protons and neutrons form an isospin doublet with $ I = \frac{1}{2} $. The proton has $ I_3 = +\frac{1}{2} $, and the neutron has $ I_3 = -\frac{1}{2} $.
- Pions ($ \pi^+, \pi^0, \pi^- $) form an isospin triplet with $ I = 1 $ and $ I_3 = +1, 0, -1 $, respectively.
Isospin Symmetry
Isospin symmetry arises from the charge independence of the strong interaction. This means that the strong force between two protons ($ pp $), two neutrons ($ nn $), or a proton and a neutron ($ np $) is nearly identical. However, this symmetry is approximate and is broken by:
- The electromagnetic interaction, which differentiates between charged and neutral particles.
- The small mass difference between up ($ u $) and down ($ d $) quarks.
Table: Isospin and Electric Charge of Quarks and Antiquarks
Particle | Symbol | Isospin ($ I $) | $ I_3 $ | Charge ($ Q $) |
---|---|---|---|---|
Quarks | ||||
Up quark | $ u $ | $ \frac{1}{2} $ | $ +\frac{1}{2} $ | $ +\frac{2}{3} $ |
Down quark | $ d $ | $ \frac{1}{2} $ | $ -\frac{1}{2} $ | $ -\frac{1}{3} $ |
Strange quark | $ s $ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} $ |
Charm quark | $ c $ | $ 0 $ | $ 0 $ | $ +\frac{2}{3} $ |
Bottom quark | $ b $ | $ 0 $ | $ 0 $ | $ -\frac{1}{3} $ |
Top quark | $ t $ | $ 0 $ | $ 0 $ | $ +\frac{2}{3} $ |
Antiquarks | ||||
Up antiquark | $ \bar{u} $ | $ \frac{1}{2} $ | $ -\frac{1}{2} $ | $ -\frac{2}{3} $ |
Down antiquark | $ \bar{d} $ | $ \frac{1}{2} $ | $ +\frac{1}{2} $ | $ +\frac{1}{3} $ |
Strange antiquark | $ \bar{s} $ | $ 0 $ | $ 0 $ | $ +\frac{1}{3} $ |
Charm antiquark | $ \bar{c} $ | $ 0 $ | $ 0 $ | $ -\frac{2}{3} $ |
Bottom antiquark | $ \bar{b} $ | $ 0 $ | $ 0 $ | $ +\frac{1}{3} $ |
Top antiquark | $ \bar{t} $ | $ 0 $ | $ 0 $ | $ -\frac{2}{3} $ |
Isospin in Quarks and Hadrons
Quark Level
At the quark level, isospin is primarily associated with the up ($ u $) and down ($ d $) quarks, which form an isospin doublet. This doublet structure arises because the up and down quarks have nearly identical masses and interact similarly under the strong force, despite their different electric charges. The isospin properties of these quarks are as follows:
- Up Quark ($ u $):
- Isospin $ I = \frac{1}{2} $.
- Third component $ I_3 = +\frac{1}{2} $.
- Electric charge $ Q = +\frac{2}{3} $.
- Down Quark ($ d $):
- Isospin $ I = \frac{1}{2} $.
- Third component $ I_3 = -\frac{1}{2} $.
- Electric charge $ Q = -\frac{1}{3} $.
The remaining quarks—strange ($ s $), charm ($ c $), bottom ($ b $), and top ($ t $) do not participate in isospin symmetry and has $ I = 0 $.
Hadrons
Hadrons are particles made of quarks and are classified into two main categories: mesons (quark-antiquark pairs) and baryons (three-quark states). The isospin properties of hadrons depend on the isospin of their constituent quarks.
Mesons
Mesons are quark-antiquark pairs and can form isospin singlets, doublets, or triplets depending on the quark content. Examples include:
- Pions ($ \pi^+, \pi^0, \pi^- $):
- These form an isospin triplet ($ I = 1 $) with $ I_3 = +1, 0, -1 $, respectively.
- Quark content:
- $ \pi^+ = u\bar{d} $.
- $ \pi^0 = \frac{1}{\sqrt{2}}(u\bar{u} - d\bar{d}) $.
- $ \pi^- = d\bar{u} $.
- Eta Meson ($ \eta^0 $):
- This is an isospin singlet ($ I = 0 $).
- Quark content: $ \eta^0 $ is a mixture of $ u\bar{u} $, $ d\bar{d} $, and $ s\bar{s} $.
Baryons
Baryons are three-quark states and can form isospin singlets, doublets, or triplets. Examples include:
- Nucleons ($ p, n $):
- These form an isospin doublet ($ I = \frac{1}{2} $) with $ I_3 = +\frac{1}{2} $ for the proton and $ I_3 = -\frac{1}{2} $ for the neutron.
- Quark content:
- Proton ($ p $) = $ uud $.
- Neutron ($ n $) = $ udd $.
- Delta Baryons ($ \Delta^{++}, \Delta^+, \Delta^0, \Delta^- $):
- These form an isospin quartet ($ I = \frac{3}{2} $) with $ I_3 = +\frac{3}{2}, +\frac{1}{2}, -\frac{1}{2}, -\frac{3}{2} $, respectively.
- Quark content:
- $ \Delta^{++} = uuu $.
- $ \Delta^+ = uud $.
- $ \Delta^0 = udd $.
- $ \Delta^- = ddd $.
Strange Hadrons
Hadrons containing strange quarks ($ s $) also exhibit isospin properties, but the strange quark itself does not contribute to isospin. Examples include:
- Kaons ($ K^+, K^0 $):
- These form an isospin doublet ($ I = \frac{1}{2} $) with $ I_3 = +\frac{1}{2} $ for $ K^+ $ and $ I_3 = -\frac{1}{2} $ for $ K^0 $.
- Quark content:
- $ K^+ = u\bar{s} $.
- $ K^0 = d\bar{s} $.
- Lambda Baryon ($ \Lambda^0 $):
- This is an isospin singlet ($ I = 0 $).
- Quark content: $ \Lambda^0 = uds $.
Conservation of Isospin
-
Strong Interactions Isospin is conserved in strong interactions. This means that the total isospin $ I $ and its third component $ I_3 $ remain unchanged during processes like particle collisions or decays mediated by the strong force.
-
Electromagnetic and Weak Interactions Isospin conservation breaks down in electromagnetic and weak interactions:
- Electromagnetic interactions violate total isospin $ I $ but conserve $ I_3 $.
- Weak interactions violate both $ I $ and $ I_3 $. For example, in beta decay ($ n \rightarrow p + e^- + \bar{\nu}_e $), the isospin changes by $ \Delta I = \frac{1}{2} $.
Examples of Isospin
Example 1: Pion-Nucleon Scattering ($ \pi^+ + p \rightarrow \pi^+ + p $)
Problem:
Analyze the isospin conservation in the scattering process $ \pi^+ + p \rightarrow \pi^+ + p $.
Solution:
- Initial State:
- $ \pi^+ $: $ I = 1 $, $ I_3 = +1 $.
- $ p $: $ I = \frac{1}{2} $, $ I_3 = +\frac{1}{2} $.
- Total initial isospin: $ I_{\text{initial}} = \frac{3}{2} $ or $ \frac{1}{2} $.
- Final State:
- $ \pi^+ $: $ I = 1 $, $ I_3 = +1 $.
- $ p $: $ I = \frac{1}{2} $, $ I_3 = +\frac{1}{2} $.
- Total final isospin: $ I_{\text{final}} = \frac{3}{2} $ or $ \frac{1}{2} $.
- Conclusion:
- Isospin is conserved ($ I_{\text{initial}} = I_{\text{final}} $), and the process is allowed in strong interactions.
Example 2: Forbidden Decay ($ \Sigma^+ \rightarrow p + \eta^0 $)
Problem:
Explain why the decay $ \Sigma^+ \rightarrow p + \eta^0 $ is forbidden.
Solution:
- Initial State:
- $ \Sigma^+ $: $ I = 1 $, $ I_3 = +1 $.
- Final State:
- $ p $: $ I = \frac{1}{2} $, $ I_3 = +\frac{1}{2} $.
- $ \eta^0 $: $ I = 0 $, $ I_3 = 0 $.
- Total final isospin: $ I_{\text{final}} = \frac{1}{2} $.
- Conclusion:
- Isospin is not conserved ($ I_{\text{initial}} = 1 \neq I_{\text{final}} = \frac{1}{2} $), so the decay is forbidden in strong interactions.
Example 3: Beta Decay ($ n \rightarrow p + e^- + \bar{\nu}_e $)
Problem:
Analyze the isospin change in the beta decay process $ n \rightarrow p + e^- + \bar{\nu}_e $.
Solution:
- Initial State:
- $ n $: $ I = \frac{1}{2} $, $ I_3 = -\frac{1}{2} $.
- Final State:
- $ p $: $ I = \frac{1}{2} $, $ I_3 = +\frac{1}{2} $.
- $ e^- $ and $ \bar{\nu}_e $: These are leptons and do not contribute to isospin.
- Conclusion:
- The isospin changes by $ \Delta I_3 = +1 $, which is allowed in weak interactions.
Applications of Isospin
- Classification of Hadrons
Isospin helps classify hadrons into multiplets based on their symmetry properties. For example:
- Nucleons ($ p, n $) form an isospin doublet.
- Pions ($ \pi^+, \pi^0, \pi^- $) form an isospin triplet.
-
Strong Interaction Dynamics Isospin conservation is used to predict the outcomes of strong interaction processes, such as particle scattering and decays.
- Connection to Other Quantum Numbers The Gell-Mann–Nishijima formula connects isospin to other quantum numbers: \(Q = I_3 + \frac{B + S}{2},\) where $ Q $ is the electric charge, $ B $ is the baryon number, and $ S $ is the strangeness.