Learning Objectives:
- Understand how solids interact with electromagnetic (EM) waves.
- Introduce classical free-electron models of electrical conduction.
- Derive electrical conductivity using the Drude model.
- Identify the limitations of the Drude model.
When an electromagnetic field interacts with a solid, it can:
- Induce currents (conductivity)
- Polarize the material (dielectric response)
- Be reflected, transmitted, or absorbed depending on the material properties
The interaction depends on:
- The electronic structure of the solid
- The frequency of the electromagnetic radiation
- Scattering mechanisms inside the solid
Classical Free Electron Theory (Drude Model)
The Drude Model (1900) is the earliest attempt to explain electrical and thermal conductivity in metals using classical physics.
Assumptions:
- Electrons behave like classical particles.
- Electrons undergo random collisions (scattering) with fixed positive ions.
- Between collisions, electrons accelerate freely under the influence of electric field E.
- The average time between collisions is called the relaxation time $ \tau $.
An external electric field $ \mathbf{E} $ applies a force $ \mathbf{F} = -e\mathbf{E} $ on each electron.
The equation of motion becomes:
\[m \frac{d\mathbf{v}}{dt} = -e\mathbf{E} - \frac{m\mathbf{v}}{\tau}\]In steady state ($ \frac{d\mathbf{v}}{dt} = 0 $):
\[\mathbf{v}_{\text{avg}} = -\frac{e\tau}{m} \mathbf{E}\]Electrical Conductivity
Current density $ \mathbf{J} $ is given by:
\[\mathbf{J} = -ne\mathbf{v}_{\text{avg}} = \frac{ne^2\tau}{m} \mathbf{E}\]Hence, electrical conductivity $ \sigma $ is:
\[\sigma = \frac{ne^2\tau}{m}\]- $ n $: Number of free electrons per unit volume
- $ e $: Charge of electron
- $ \tau $: Relaxation time
- $ m $: Mass of electron
So:
\[\mathbf{J} = \sigma \mathbf{E}\]Limitations of the Drude Model
- Fails to explain temperature dependence of conductivity accurately.
- Cannot explain positive Hall coefficient in some metals.
- Does not account for quantum statistics (Fermi-Dirac distribution).
- Over-simplifies electron-lattice interactions.
Macroscopic Theory of Optical Constants, Dispersion, and Absorption
Learning Objectives:
- Understand how electromagnetic waves propagate in a medium.
- Define key optical constants: refractive index, absorption coefficient, and dielectric function.
- Relate microscopic material properties to macroscopic electromagnetic behavior.
- Derive expressions for the complex dielectric function and refractive index.
- Explore the Lorentz oscillator model and dispersion formulas.
- Connect theory with observable properties of materials.
Electromagnetic Wave in Matter
Maxwell’s equations in a linear, isotropic, homogeneous medium (no free charge/current):
\[\nabla \cdot \mathbf{D} = 0, \quad \nabla \cdot \mathbf{B} = 0\] \[\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \quad \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t}\]Constitutive relations:
\[\mathbf{D} = \varepsilon \mathbf{E}, \quad \mathbf{B} = \mu \mathbf{H}\]For optical frequencies, $ \mu \approx \mu_0 $, so we focus on dielectric function $ \varepsilon(\omega) $.
Wave Equation in Dielectric Medium
The wave equation for the electric field becomes:
\[\nabla^2 \mathbf{E} - \mu_0 \varepsilon \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0\]Assume a plane wave solution:
\[\mathbf{E}(z,t) = \mathbf{E}_0 e^{i(kz - \omega t)}\]With:
\[k = \omega \sqrt{\mu_0 \varepsilon(\omega)} = \frac{\omega n(\omega)}{c}\]Complex Dielectric Function and Optical Constants
We define a complex dielectric function:
\[\varepsilon(\omega) = \varepsilon_1(\omega) + i \varepsilon_2(\omega)\]- $ \varepsilon_1(\omega) $: describes dispersion
- $ \varepsilon_2(\omega) $: describes absorption
The complex refractive index is:
\[\tilde{n}(\omega) = n(\omega) + i\kappa(\omega)\]where:
- $n(\omega)$: refractive index (phase velocity)
- $\kappa(\omega)$: extinction coefficient (attenuation)
Relationship to dielectric function:
\[\varepsilon(\omega) = \tilde{n}^2(\omega) = (n + i\kappa)^2\]Expanding:
\[\varepsilon_1 = n^2 - \kappa^2, \quad \varepsilon_2 = 2n\kappa\]Absorption Coefficient
The wave propagates as:
\[E(z) = E_0 e^{i(kz - \omega t)} = E_0 e^{-\alpha z/2} e^{i(k' z - \omega t)}\]The absorption coefficient $ \alpha $ is related to $ \kappa $ by:
\[\alpha = \frac{4\pi \kappa}{\lambda}\]This describes how the wave amplitude decays exponentially inside the material.
Dispersion and Absorption in Solids
What is Dispersion?
Dispersion refers to the frequency dependence of the refractive index $n(\omega)$ or dielectric function $\varepsilon(\omega)$.
It causes:
- Wavelength-dependent phase velocity
- Color separation in a prism
Mathematically:
\[n(\omega) = \text{Re}[\tilde{n}(\omega)] = \sqrt{\frac{\sqrt{\varepsilon_1^2 + \varepsilon_2^2} + \varepsilon_1}{2}}\]What is Absorption?
Absorption transfers EM energy to internal degrees of freedom (electrons/phonons).
- Represented by $ \varepsilon_2(\omega) $ or $\kappa$
- Intensity decay:
Lorentz Oscillator Model
Bound electrons behave like damped harmonic oscillators:
\[m \frac{d^2 x}{dt^2} + m\gamma \frac{dx}{dt} + m\omega_0^2 x = -eE e^{-i\omega t}\]Solution gives displacement:
\[x(\omega) = \frac{-eE_0}{m(\omega_0^2 - \omega^2 - i\gamma \omega)}\]Polarization:
\[P(\omega) = N e x(\omega) = \frac{Ne^2}{m} \cdot \frac{1}{\omega_0^2 - \omega^2 - i\gamma \omega} E(\omega)\]Dielectric function:
\[\varepsilon(\omega) = 1 + \frac{Ne^2}{\varepsilon_0 m} \cdot \frac{1}{\omega_0^2 - \omega^2 - i\gamma \omega}\]Dispersion Formula and Applications
We typically write the dielectric function as:
\[\varepsilon(\omega) = \varepsilon_\infty + \frac{f}{\omega_0^2 - \omega^2 - i\gamma \omega}\]Where:
- $\varepsilon_\infty$: high-frequency contribution
- $f = \frac{Ne^2}{\varepsilon_0 m}$: oscillator strength
Splitting into Real and Imaginary Parts
\[\varepsilon(\omega) = \varepsilon_1(\omega) + i \varepsilon_2(\omega)\]Real part (dispersion):
\[\varepsilon_1(\omega) = \varepsilon_\infty + \frac{f(\omega_0^2 - \omega^2)}{(\omega_0^2 - \omega^2)^2 + (\gamma \omega)^2}\]Imaginary part (absorption):
\[\varepsilon_2(\omega) = \frac{f \gamma \omega}{(\omega_0^2 - \omega^2)^2 + (\gamma \omega)^2}\]Physical Interpretation
- $\varepsilon_1(\omega)$ shows strong frequency dependence near $ \omega_0 $
- $\varepsilon_2(\omega)$ peaks at $ \omega = \omega_0 $
Frequency Behavior:
- $ \omega \ll \omega_0 \Rightarrow \varepsilon_1 > \varepsilon_\infty $
- $ \omega \gg \omega_0 \Rightarrow \varepsilon_1 \rightarrow \varepsilon_\infty $
- Peak in $ \varepsilon_2(\omega) $ at resonance $ \omega = \omega_0 $