Question
Given a 2x2 matrix: \(A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}\)
- Derive the characteristic polynomial of matrix \(A\).
- Find its eigenvalues.
- Find the corresponding eigenvectors.
- Show that \(Av = \lambda v\) for each eigenpair.
- Verify your solution using Python (without using
numpy.linalg.eig
).
Solution
1. Characteristic Polynomial
To find the eigenvalues, we solve the characteristic equation:
\[\det(A - \lambda I) = 0\]Where \(I\) is the identity matrix. We compute:
\[A - \lambda I = \begin{bmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{bmatrix}\]The determinant is:
\[(4 - \lambda)(3 - \lambda) - (2)(1) = 0\]Expanding this:
\[(4 - \lambda)(3 - \lambda) - 2 = (12 - 4\lambda - 3\lambda + \lambda^2) - 2 = \lambda^2 - 7\lambda + 10 = 0\]2. Eigenvalues
Solving the quadratic equation:
\[\lambda^2 - 7\lambda + 10 = 0\]We use the quadratic formula:
\[\lambda = \frac{7 \pm \sqrt{(-7)^2 - 4 \cdot 1 \cdot 10}}{2} = \frac{7 \pm \sqrt{49 - 40}}{2} = \frac{7 \pm 3}{2}\]Thus, the eigenvalues are:
\[\lambda_1 = 5, \quad \lambda_2 = 2\]3. Eigenvectors
For \(\lambda_1 = 5\):
We solve:
\[(A - 5I)v = 0 \Rightarrow \begin{bmatrix} -1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0\]From the equations:
\[-1x + 2y = 0 \Rightarrow x = 2y\]So an eigenvector is:
\[v_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}\]For \(\lambda_2 = 2\):
We solve:
\[(A - 2I)v = 0 \Rightarrow \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0\]From the equations:
\[2x + 2y = 0 \Rightarrow x = -y\]So an eigenvector is:
\[v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}\]4. Verification
We verify \(Av = \lambda v\):
For \(\lambda = 5\) and \(v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}\):
\[A v = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix} = 5 \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix}\]For \(\lambda = 2\) and \(v = \begin{bmatrix} -1 \\ 1 \end{bmatrix}\):
\[A v = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -2 \\ 2 \end{bmatrix} = 2 \cdot \begin{bmatrix} -1 \\ 1 \end{bmatrix}\]5. Python Code (Without np.linalg.eig
)
def find_eigen(A):
a, b = A[0]
c, d = A[1]
# Characteristic polynomial coefficients: λ² - (a+d)λ + (ad - bc)
trace = a + d
det = a*d - b*c
discriminant = trace**2 - 4 * det
sqrt_disc = discriminant**(1/2)
lambda1 = (trace + sqrt_disc) / 2
lambda2 = (trace - sqrt_disc) / 2
def eigenvector(matrix, eigenvalue):
a, b = matrix[0][0] - eigenvalue, matrix[0][1]
c, d = matrix[1][0], matrix[1][1] - eigenvalue
if abs(a) > abs(c):
return [b, -a]
else:
return [d, -c]
v1 = eigenvector(A, lambda1)
v2 = eigenvector(A, lambda2)
return (lambda1, v1), (lambda2, v2)
A = [[4, 2], [1, 3]]
eig1, eig2 = find_eigen(A)
print("Eigenvalue 1:", eig1[0], "Eigenvector:", eig1[1])
print("Eigenvalue 2:", eig2[0], "Eigenvector:", eig2[1])