JET: Lecture-III
Line, Surface and Volume Integral
QUIZ
1. Line Integrals
A line integral measures the value of a scalar or vector field along a curve.
The curve may be in 2D or 3D and is usually parametrized as $ \mathbf{r}(t) $.
For a scalar field $ \phi(x, y, z) $, the line integral along a curve $ C $ is:
\[\int_C \phi \, ds\]where
\[ds = |\mathbf{r}'(t)|\, dt\]This gives the accumulated value of the scalar field along the path.
For a vector field $ \mathbf{A} $, line integral is:
\[\int_C \mathbf{A} \cdot d\mathbf{r}\]where $ d\mathbf{r} = dx\, \hat{i} + dy\, \hat{j} + dz\, \hat{k} $.
Interpretation:
- Measures the work done by a force field along a path.
\(W = \int_C \mathbf{F} \cdot d\mathbf{r}\) - Circulation of a vector field.
Important: For a conservative field $ \mathbf{A} = \nabla \phi $:
\[\int_C \mathbf{A} \cdot d\mathbf{r} = \phi(B) - \phi(A)\]i.e., path-independent.
1.1 Differential Length Elements $d\mathbf{l}$
| Coordinate System | Differential Length Vector |
|---|---|
| Cartesian $(x, y, z)$ | $ d\mathbf{l} = dx\,\hat{i} + dy\,\hat{j} + dz\,\hat{k} $ |
| Cylindrical $(r, \theta, z)$ | $ d\mathbf{l} = dr\,\hat{r} + r\,d\theta\,\hat{\theta} + dz\,\hat{z} $ |
| Spherical $(r, \theta, \phi)$ | $ d\mathbf{l} = dr\,\hat{r} + r\,d\theta\,\hat{\theta} + r\sin\theta\, d\phi\,\hat{\phi} $ |
2. Surface Integrals
A surface integral measures how a scalar or vector field interacts with a surface.
For a scalar field $ \phi $, over surface $ S $:
\[\iint_S \phi \, dS\]where $ dS = |\mathbf{r}_u \times \mathbf{r}_v| \, du\, dv $.
Physical meaning:
- Total mass on a thin sheet.
- Total heat radiated by a surface.
Flux of vector field $ \mathbf{A} $ across a surface:
\[\iint_S \mathbf{A} \cdot d\mathbf{S}\]where
\[d\mathbf{S} = \hat{n}\, dS\]This measures how much of the field passes through the surface.
Examples:
- Electric flux:
\(\Phi_E = \iint_S \mathbf{E} \cdot d\mathbf{S}\) - Magnetic flux:
\(\Phi_B = \iint_S \mathbf{B} \cdot d\mathbf{S}\)
Flux is positive: when the field flows along outward normal.
Flux is negative: when it flows inward.
2.1 Differential Surface Elements $d\mathbf{S}$
Surface elements depend on which surface is being used (constant coordinate).
Cartesian Coordinates
| Surface | Differential Area Vector |
|---|---|
| $x=\text{constant}$ | $ d\mathbf{S} = dy\,dz\, \hat{i} $ |
| $y=\text{constant}$ | $ d\mathbf{S} = dx\,dz\, \hat{j} $ |
| $z=\text{constant}$ | $ d\mathbf{S} = dx\,dy\, \hat{k} $ |
Cylindrical Coordinates
| Surface | Differential Area Vector |
|---|---|
| $r=\text{constant}$ | $ d\mathbf{S} = (r\, d\theta\, dz)\, \hat{r} $ |
| $\theta=\text{constant}$ | $ d\mathbf{S} = (dr\, dz)\, \hat{\theta} $ |
| $z=\text{constant}$ | $ d\mathbf{S} = (r\, dr\, d\theta)\, \hat{z} $ |
Spherical Coordinates
| Surface | Differential Area Vector |
|---|---|
| $r=\text{constant}$ | $ d\mathbf{S} = (r^2 \sin\theta\, d\theta\, d\phi)\, \hat{r} $ |
| $\theta=\text{constant}$ | $ d\mathbf{S} = (r \sin\theta\, dr\, d\phi)\, \hat{\theta} $ |
| $\phi=\text{constant}$ | $ d\mathbf{S} = (r\, dr\, d\theta)\, \hat{\phi} $ |
3. Volume Integrals
A volume integral gives the accumulated value of a field inside a 3D region.
\[\iiint_V \phi \, dV\]For Cartesian:
\(dV = dx\, dy\, dz\)
Physical meaning:
- Total mass of a 3D body with density $ \rho(x,y,z) $.
- Total charge if $ \rho $ is charge density.
3.1 Differential Volume Elements $dV$
| Coordinate System | Differential Volume |
|---|---|
| Cartesian | $ dV = dx\, dy\, dz $ |
| Cylindrical | $ dV = r\, dr\, d\theta\, dz $ |
| Spherical | $ dV = r^2 \sin\theta\, dr\, d\theta\, d\phi $ |