JET: Lecture-V
1. Scalar and Vector Potentials
In classical field theory (electromagnetism, fluid dynamics, gravitation), many vector fields can be expressed in terms of potentials.
1.1 Scalar Potential $\phi$
A vector field $\vec{F}$ is said to have a scalar potential if it can be written as:
\[\vec{F} = -\nabla \phi\]Such a field is called:
- Irrotational (curl-free), because
\(\nabla \times \vec{F} = \nabla \times (-\nabla \phi) = 0\)
Common examples:
- Gravitational field:
\(\vec{g} = -\nabla \phi_g\) - Electrostatic field:
\(\vec{E} = -\nabla V\)
Here, equipotential surfaces are surfaces where $\phi = \text{constant}$ and $\vec{F}$ is always normal to these surfaces.
1.2 Vector Potential $\vec{A}$
A vector field $\vec{F}$ is said to have a vector potential if:
\[\vec{F} = \nabla \times \vec{A}\]Such fields are:
- Solenoidal (divergence-free), because
\(\nabla \cdot \vec{F} = \nabla \cdot (\nabla \times \vec{A}) = 0\)
Examples:
- Magnetic field: \(\vec{B} = \nabla \times \vec{A}\)
- Incompressible fluid velocity field: \(\vec{v} = \nabla \times \vec{\Psi}\)
Scalar potentials relate to curl-free fields, vector potentials relate to divergence-free fields.
2. Gauge Freedom
Potentials are not unique.
2.1 Scalar Potential Gauge
If: \(\vec{F} = -\nabla \phi\)
Then adding a constant does not change the field: \(\phi' = \phi + C\)
2.2 Vector Potential Gauge
A new vector potential: \(\vec{A}' = \vec{A} + \nabla \chi\)
still satisfies: \(\nabla \times \vec{A}' = \nabla \times \vec{A}\)
This is the basis of gauge transformations in electromagnetism.
3. Laplacian Operator
The Laplacian is a second-order differential operator defined as:
3.1 Laplacian of a Scalar Field
\(\nabla^2 \phi = \nabla \cdot (\nabla \phi)\)
3.2 Laplacian of a Vector Field
Applied component-wise:
\[\nabla^2 \vec{A} = \left( \nabla^2 A_x \right)\hat{i} + \left( \nabla^2 A_y \right)\hat{j} + \left( \nabla^2 A_z \right)\hat{k}\]3.3 Physical Meaning
-
In electrostatics:
\(\nabla^2 V = -\frac{\rho}{\epsilon_0}\) (Poisson equation) -
In free space:
\(\nabla^2 V = 0\) (Laplace equation → harmonic functions) -
In diffusion:
\(\frac{\partial u}{\partial t} = D \nabla^2 u\)
The Laplacian measures how a quantity “spreads” relative to surrounding values.
Relation Between Potentials and Laplacian
From a scalar potential representation of a field: \(\vec{F} = -\nabla \phi\)
Taking the divergence of both sides gives the relation between the divergence of the field and the Laplacian of the potential: \(\nabla \cdot \vec{F} = -\nabla^2 \phi\)
For a solenoidal field that can be expressed using a vector potential: \(\vec{F} = \nabla \times \vec{A}\)
Taking the curl again yields: \(\nabla \times \vec{F} = \nabla \times (\nabla \times \vec{A})\)
Using the vector identity for the curl of a curl: \(\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}\)
This naturally introduces gauge conditions that simplify the equations. Common choices are:
- Coulomb gauge: \(\nabla \cdot \vec{A} = 0\)
This choice eliminates the divergence term completely: \(\nabla \cdot \vec{A} = 0\) Substituting this into the identity simplifies the curl–curl expression to: \(\nabla \times (\nabla \times \vec{A}) = -\nabla^2 \vec{A}\)
- Lorenz gauge: \(\nabla \cdot \vec{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t} = 0\)
Instead of setting the divergence to zero, this gauge relates it to the scalar potential: \(\nabla \cdot \vec{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t} = 0\) This choice ensures both $\phi$ and $\vec{A}$ obey wave equations.
Supplementary
To understand how the Lorenz gauge works, begin with Maxwell’s equations written in terms of potentials:
The fields are: \(\vec{E} = -\nabla \phi - \frac{\partial \vec{A}}{\partial t}\) \(\vec{B} = \nabla \times \vec{A}\)
Insert these potentials into Maxwell’s equations.
From Gauss’s law:
\(\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}\)
Substitute $\vec{E}$:
\[\nabla \cdot \left( -\nabla \phi - \frac{\partial \vec{A}}{\partial t} \right) = \frac{\rho}{\epsilon_0}\]This gives:
\[-\nabla^2 \phi - \frac{\partial}{\partial t}(\nabla \cdot \vec{A}) = \frac{\rho}{\epsilon_0}\]Now apply Lorenz gauge:
\[\nabla \cdot \vec{A} = -\frac{1}{c^2}\frac{\partial \phi}{\partial t}\]Substitute it:
\[-\nabla^2 \phi + \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} = \frac{\rho}{\epsilon_0}\]Rearranging:
\[\nabla^2 \phi - \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} = -\frac{\rho}{\epsilon_0}\]This is a wave equation for the scalar potential.
From Ampère–Maxwell law:
\(\nabla \times \vec{B} - \frac{1}{c^2}\frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J}\)
Insert potentials:
\[\nabla \times (\nabla \times \vec{A}) + \frac{1}{c^2}\frac{\partial}{\partial t} \left( \nabla \phi + \frac{\partial \vec{A}}{\partial t} \right) = \mu_0 \vec{J}\]Use vector identity:
\[\nabla \times (\nabla \times \vec{A}) = \nabla(\nabla \cdot \vec{A}) - \nabla^2 \vec{A}\]Apply Lorenz gauge again:
\[\nabla(\nabla \cdot \vec{A}) = -\frac{1}{c^2}\nabla \left( \frac{\partial \phi}{\partial t} \right)\]This cancels with a term from the time derivative of $\vec{E}$.
What remains is:
\[-\nabla^2 \vec{A} + \frac{1}{c^2}\frac{\partial^2 \vec{A}}{\partial t^2} = \mu_0 \vec{J}\]Or:
\[\nabla^2 \vec{A} - \frac{1}{c^2}\frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J}\]This is a wave equation for the vector potential.
Why Lorenz Gauge Works
The Lorenz gauge:
\[\nabla \cdot \vec{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t} = 0\]eliminates mixed terms like
$\frac{\partial}{\partial t}(\nabla \cdot \vec{A})$ and
$\nabla (\partial \phi/\partial t)$.
It decouples the potentials and converts Maxwell’s equations into clean wave equations:
-
For $ \phi $:
\[\nabla^2 \phi - \frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} = -\frac{\rho}{\epsilon_0}\] -
For $ \vec{A} $:
\[\nabla^2 \vec{A} - \frac{1}{c^2}\frac{\partial^2 \vec{A}}{\partial t^2} = -\mu_0 \vec{J}\]