Posts - Page 2 of 4
Quantum Tunneling
In this article we will study:
Scattering Revisited

In this lecture, we will start by revisiting the basics of quantum scattering, focusing on partial wave analysis and phase shifts. The graph at the top illustrates the Breit-Wigner resonance curve, which we will discuss in detail after exploring resonance scattering and its role in energy-dependent cross-sections.
Nuclear Reactions
Nuclear reactions can occur when a target nucleus $X$ is bombarded by a particle $a$, resulting in a daughter nucleus $Y$ and an outgoing particle $b$:
Basic Electronics: Semiconductors
In 1839, Becquerel discovered that some materials generate an electric current when exposed to light. This is known as the photoelectric effect and is the basis of operations of solar cells. Solar cells are made of semiconductors.
- Note: Semiconductors are materials that act as insulators at low temperatures, but as conductors when energy or heat is available.
Particle Physics: Quarks
Particle Physics: Conservation Laws
The conservation laws of energy, momentum, and charge govern all processes. In particle physics, additional empirical conservation laws are also crucial. They are:
- Conservation of baryon number
- Conservation of lepton number
- Conservation of strangeness
- Conservation of isospin
- Conservation of electric charge
Particle Physics: Particle Classification
Japanese physicist Hideki Yukawa proposed in 1935 that the nuclear force is mediated by a new particle, a meson, whose exchange between nucleons causes the force. He predicted its mass to be about 200 times that of an electron, earning him a Nobel Prize in 1949. Because the new particle would have a mass between that of the electron and that of the proton, it was called a meson (from the Greek meso, “middle”)